270 research outputs found

    Reproducible Evaluation of Pan-Tilt-Zoom Tracking

    Get PDF
    Tracking with a Pan-Tilt-Zoom (PTZ) camera has been a research topic in computer vision for many years. However, it is very difficult to assess the progress that has been made on this topic because there is no standard evaluation methodology. The difficulty in evaluating PTZ tracking algorithms arises from their dynamic nature. In contrast to other forms of tracking, PTZ tracking involves both locating the target in the image and controlling the motors of the camera to aim it so that the target stays in its field of view. This type of tracking can only be performed online. In this paper, we propose a new evaluation framework based on a virtual PTZ camera. With this framework, tracking scenarios do not change for each experiment and we are able to replicate online PTZ camera control and behavior including camera positioning delays, tracker processing delays, and numerical zoom. We tested our evaluation framework with the Camshift tracker to show its viability and to establish baseline results.Comment: This is an extended version of the 2015 ICIP paper "Reproducible Evaluation of Pan-Tilt-Zoom Tracking

    Attentive monitoring of multiple video streams driven by a Bayesian foraging strategy

    Full text link
    In this paper we shall consider the problem of deploying attention to subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multi-stream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g. activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Dataset, a publicly available dataset, are presented to illustrate the utility of the proposed technique.Comment: Accepted to IEEE Transactions on Image Processin

    Demonstration of latency-aware 5G network slicing on optical metro networks

    Get PDF
    The H2020 METRO-HAUL European project has architected a latency-aware, cost-effective, agile, and programmable optical metro network. This includes the design of semi-disaggregated metro nodes with compute and storage capabilities, which interface effectively with both 5G access and multi-Tbit/s elastic optical networks in the core. In this paper, we report the automated deployment of 5G services, in particular, a public safety video surveillance use case employing low-latency object detection and tracking using on-camera and on-the-edge analytics. The demonstration features flexible deployment of network slice instances, implemented in terms of ETSI NFV Network Services. We summarize the key findings in a detailed analysis of end-to-end quality of service, service setup time, and soft-failure detection time. The results show that the round-trip-time over an 80 km link is under 800 µs and the service deployment time under 180 seconds.Horizon 2020 Framework Programme (761727); Bundesministerium für Bildung und Forschung (16KIS0979K).Peer ReviewedArticle signat per 25 autors/es: B. Shariati, Fraunhofer HHI, Berlin, Germany / L. Velasco, Universitat Politècnica de Catalunya, Barcelona, Spain / J.-J. Pedreno-Manresa, ADVA, Munich, Germany / A. Dochhan, ADVA, Munich, Germany / R. Casellas, Centre Tecnològic Telecomunicacions Catalunya, Castelldefels, Spain / A. Muqaddas, University of Bristol, Bristol, UK / O. Gonzalez de Dios, Telefónica, Madrid, Spain / L. Luque Canto, Telefónica, Madrid, Spain / B. Lent, Qognify GmbH, Bruchsal, Germany / J. E. Lopez de Vergara, Naudit HPCN, Madrid, Spain / S. Lopez-Buedo, Naudit HPCN, Madrid, Spain / F. Moreno, Universidad Politécnica de Cartagena, Cartagena, Spain / P. Pavon, Universidad Politécnica de Cartagena, Cartagena, Spain / M. Ruiz, Universitat Politècnica de Catalunya, Barcelona, Spain / S. K. Patri, ADVA, Munich, Germany / A. Giorgetti, CNIT, Pisa, Italy / F. Cugini, CNIT, Pisa, Italy / A. Sgambelluri, CNIT, Pisa, Italy / R. Nejabati, University of Bristol, Bristol, UK / D. Simeonidou, University of Bristol, Bristol, UK / R.-P. Braun, Deutsche Telekom, Germany / A. Autenrieth, ADVA, Munich, Germany / J.-P. Elbers, ADVA, Munich, Germany / J. K. Fischer, Fraunhofer HHI, Berlin, Germany / R. Freund, Fraunhofer HHI, Berlin, GermanyPostprint (author's final draft

    Artificial Neural Networks for Airport Runway Safety Systems

    Get PDF
    This paper presents the analysis of the existing approaches to ensuring the safety of aircraft`s takeoff and landing at airport runways using video surveillance systems. The subject area is formalized, and security threats and measures to prevent them are assessed. Optional architecture of the system designed for detection and classification of moving objects in the airport runway area is presented. The architecture is based on Neural Networks with AI elements. Also the original method of runway objects’ trajectory tracking is proposed. And finally, the research results of the applicability of the proposed architecture are presented.</p

    Finding Field of View Overlap by Motion Analysis

    Get PDF
    Network cameras has in the recent years become more powerful. Each camera is independent and has its own surveillance task. It is reasonable that network cameras in the future should cooperate together to increase surveillance effectiveness. There is a need to find cameras sharing the same field of view in order for an operator to switch perspective. This thesis investigates how multiple network cameras can cooperate by finding the shared field of view between cameras. With the shared field of view, we implement an additional knowledge above system of network cameras and new use cases arises. Our method consist of applying a grid of cells on each camera's video stream and study movement detection. We gather contradicting proof of connectedness between each cell in the whole network of cameras. Our method avoids problems with feature detection such as different perspectives or image quality. We found that our method works with promising results and we can find shared field of view between cameras. There is a limitation in memory of storing all cells and we can only find overlap in regions with movement. This field has not been researched so much, making evaluation hard, as many approaches focuses on feature detection.Network cameras has significantly increased in the recent years. Each camera is independent and its monitoring task can easily be remotely altered. This work focuses on increasing effectiveness of a system of cameras by adding additional knowledge on top of the system and by utilizing multiple cameras when a shared field of view has been found

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C
    • …
    corecore