225 research outputs found

    Lower bounds for on-line graph colorings

    Full text link
    We propose two strategies for Presenter in on-line graph coloring games. The first one constructs bipartite graphs and forces any on-line coloring algorithm to use 2log2n102\log_2 n - 10 colors, where nn is the number of vertices in the constructed graph. This is best possible up to an additive constant. The second strategy constructs graphs that contain neither C3C_3 nor C5C_5 as a subgraph and forces Ω(nlogn13)\Omega(\frac{n}{\log n}^\frac{1}{3}) colors. The best known on-line coloring algorithm for these graphs uses O(n12)O(n^{\frac{1}{2}}) colors

    Deterministic Constructions for Large Girth Protograph LDPC Codes

    Full text link
    The bit-error threshold of the standard ensemble of Low Density Parity Check (LDPC) codes is known to be close to capacity, if there is a non-zero fraction of degree-two bit nodes. However, the degree-two bit nodes preclude the possibility of a block-error threshold. Interestingly, LDPC codes constructed using protographs allow the possibility of having both degree-two bit nodes and a block-error threshold. In this paper, we analyze density evolution for protograph LDPC codes over the binary erasure channel and show that their bit-error probability decreases double exponentially with the number of iterations when the erasure probability is below the bit-error threshold and long chain of degree-two variable nodes are avoided in the protograph. We present deterministic constructions of such protograph LDPC codes with girth logarithmic in blocklength, resulting in an exponential fall in bit-error probability below the threshold. We provide optimized protographs, whose block-error thresholds are better than that of the standard ensemble with minimum bit-node degree three. These protograph LDPC codes are theoretically of great interest, and have applications, for instance, in coding with strong secrecy over wiretap channels.Comment: 5 pages, 2 figures; To appear in ISIT 2013; Minor changes in presentatio

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    A Breezing Proof of the KMW Bound

    Full text link
    In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with nn nodes and maximum degree Δ\Delta on which Ω(min{logn/loglogn,logΔ/loglogΔ})\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\}) (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 1515 years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and simple\mathit{simple} proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.Comment: 21 pages, 6 figure
    corecore