398 research outputs found

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    Josephson Wellenform Charakterisierung eines Sigma-Delta Analog/Digital Wandlers zur Datenerfassung in der Metrologie

    Get PDF
    A sampling system based on a 24-bits sigma-delta analog-to-digital converter (ADC) was built and characterized in order to study the feasibility of using this type of ADCs in electrical metrology. The non-linearities of the sampling system have been studied and a model for postcorrecting the measured data points established. The Hammerstein model, consisting of a static non-linear part and a linear system, was employed. A 4-th order polynomial accounts for the non-linearities of the analog electronics and the input stages of the sigma delta ADC. The linear part corresponds to the transfer function of the decimation filters internal to the ADC. The parameters for the model of the system were determined using noiseless and drift-free waveforms from a Josephson waveform synthesizer. The performance of the sampling system was verified experimentally by comparing the measured root-mean-square (rms) value of sinusoidal signals with the results from an established method. The results obtained using the post-corrected samples from the sampling system at 125 Hz agreed to within 2 μV/V with the de facto standard in metrology laboratories, which uses a high accuracy digital voltmeter. Precision measurements are limited by the decimation filters inside the ADC and can only be carried out for frequencies below 1/24-th of the equivalent sampling rate. The characterization results have shown that the non-linearities have been compensated to 5 μV/V or better and the effective resolution exceeds 20 bits, over an input range of 1 V at the equivalent sampling rate of 32 kHz. The experimental validation has proved that it is possible to measure rms values of sinusoidal signals with 1 V peak amplitudes for frequencies up to 1.3 kHz with uncertainty of 8 μV/V, significantly improving the uncertainty achievable with de facto standard which reaches 8 μV/V at 500 Hz.Ein Abtastsystem basierend auf einem 24-Bit Sigma-Delta Analog-DigitalWandler (ADC) wurde gebaut und charakterisiert, um die Möglichkeiten eines solchen ADC-Typs für Anwendungen in der elektrischen Metrologie zu untersuchen. Die Nichtlinearitäten des Abtastsystems wurden bestimmt und ein Modell für die nachträgliche Korrektur der erfassten Abtastwerte entwickelt. Dafür wurde das Hammerstein Modell verwendet, das zur Charakterisierung eines statisch, nichtlinearen Blocks gefolgt von einem linearen Teil geeignet ist. Ein Polynom vierter Ordnung wurde zur Beschreibung der statischen Nichtlinearität in der analogen Elektronik und der Eingangsstufe des Sigma-Delta ADC verwendet. Der lineare Teil des Modells umfasst die Transferfunktion des Dezimationsfilters im ADC Chip. Die Parameter für das Modell wurden mithilfe rausch- und driftloser Signale von einem Josephson Wellenform Synthesizer ermittelt. Die Leistungsfähigkeit des Abtastsystems wurde experimentell durch Effektivwertmessungen (rms) von sinusförmigen Signalen mit einem etablierten Messverfahren überprüft. Als Ergebnis wurde eine Übereinstimmung innerhalb von 2 μV/V bei 125 Hz mit dem de facto Normal der metrologischen Kalibrierlabore gefunden, das auf einem hochpräzisen Digitalvoltmeter basiert. Präzisionsmessungen haben ergeben, dass die Dezimationsfilter im ADC die maximale Frequenz auf 1/24stel der äquivalenten Abtastrate begrenzen, wenn die bestmöglichen Unsicherheiten erreicht werden sollen. Die Ergebnisse der Systemcharakterisierung haben bestätigt, dass Nichtlinearitäten auf 5 μV/V oder besser kompensiert werden. Die effektive Auflösung überschreitet 20 Bit über einen Eingangsbereich von 1 V und mit einer äquivalenten Abtastrate von 32 kHz. Die experimentelle Überprüfung hat gezeigt, dass es mit dem neuen System möglich ist, den Effektivwert sinusförmiger Signale und 1 V Amplitude für Frequenzen bis 1,3 kHz mit einer Messunsicherheit von 8 μV/V zu bestimmen, und somit die erreichbare Messunsicherheit des de facto Normals, das 8 μV/V bei 500 Hz erreicht, deutlich zu verbessern

    Noise-Shaping SAR ADCs.

    Full text link
    This work investigates hybrid analog-to-digital converters (ADCs) that combine the phenomenal energy efficiency of successive-approximation (SAR) ADCs with the resolution enhancement strategies used by noise-shaping converters. Because charge-redistribution SAR ADCs contain few active components and rely on highly digital controllers, SAR ADCs demonstrate the best energy efficiencies of all low bandwidth, moderate resolution converters (~10 bits). SAR ADCs achieve remarkable power efficiency at low resolution, but as the resolution of the SAR ADC increases, the specifications for input-referred comparator noise become more stringent and total DAC capacitance becomes too large, which degrades both power efficiency and bandwidth. For these reasons, lower resolution, lower bandwidth applications tend to favor traditional SAR ADC architectures, while higher bandwidth, higher resolution applications tend to favor pipeline-SARs. Although the use of amplifiers in pipeline-assisted SARs relaxes the comparator noise requirements and improves bandwidth, amplifier design becomes more of a challenge in highly scaled processes with reduced supply voltages. In this work, we explore the use of feedback and noise-shaping to enhance the resolution of SAR ADCs. Unlike pipeline-SARs, which require high-gain, linear amplifiers, noise-shaping SARs can be constructed using passive FIR filter structures. Furthermore, the use of feedback and noise-shaping reduces the impact of thermal kT/C noise and comparator noise. This work details and explores a new class of noise-shaping SARs.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/113647/1/fredenbu_1.pd

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Timing Signals and Radio Frequency Distribution Using Ethernet Networks for High Energy Physics Applications

    Get PDF
    Timing networks are used around the world in various applications from telecommunications systems to industrial processes, and from radio astronomy to high energy physics. Most timing networks are implemented using proprietary technologies at high operation and maintenance costs. This thesis presents a novel timing network capable of distributed timing with subnanosecond accuracy. The network, developed at CERN and codenamed “White- Rabbit”, uses a non-dedicated Ethernet link to distribute timing and data packets without infringing the sub-nanosecond timing accuracy required for high energy physics applications. The first part of this thesis proposes a new digital circuit capable of measuring time differences between two digital clock signals with sub-picosecond time resolution. The proposed digital circuit measures and compensates for the phase variations between the transmitted and received network clocks required to achieve the sub-nanosecond timing accuracy. Circuit design, implementation and performance verification are reported. The second part of this thesis investigates and proposes a new method to distribute radio frequency (RF) signals over Ethernet networks. The main goal of existing distributed RF schemes, such as Radio-Over-Fibre or Digitised Radio-Over-Fibre, is to increase the bandwidth capacity taking advantage of the higher performance of digital optical links. These schemes tend to employ dedicated and costly technologies, deemed unnecessary for applications with lower bandwidth requirements. This work proposes the distribution of RF signals over the “White-Rabbit” network, to convey phase and frequency information from a reference base node to a large numbers of remote nodes, thus achieving high performance and cost reduction of the timing network. Hence, this thesis reports the design and implementation of a new distributed RF system architecture; analysed and tested using a purpose-built simulation environment, with results used to optimise a new bespoke FPGA implementation. The performance is evaluated through phase-noise spectra, the Allan-Variance, and signalto- noise ratio measurements of the distributed signals
    corecore