1,638 research outputs found

    Hardware prototyping and validation of a W-ΔDOR digital signal processor

    Get PDF
    Microwave tracking, usually performed by on ground processing of the signals coming from a spacecraft, represents a crucial aspect in every deep-space mission. Various noise sources, including receiver noise, affect these signals, limiting the accuracy of the radiometric measurements obtained from the radio link. There are several methods used for spacecraft tracking, including the Delta-Differential One-Way Ranging (ΔDOR) technique. In the past years, European Space Agency (ESA) missions relied on a narrowband ΔDOR system for navigation in the cruise phase. To limit the adverse effect of nonlinearities in the receiving chain, an innovative wideband approach to ΔDOR measurements has recently been proposed. This work presents the hardware implementation of a new version of the ESA X/Ka Deep Space Transponder based on the new tracking technique named Wideband ΔDOR (W-ΔDOR). The architecture of the new transponder guarantees backward compatibility with narrowband ΔDOR

    GaN LIGHT EMISSION FOR CONTROL SYSTEM FEEDBACK

    Get PDF
    This work explores previous research showing the correlation of light emission to current and temperature in a gallium nitride (GaN) vertical diode to predict current within a power converter circuit. Use of light emissions to measure current would offer an improvement over present sensors, since light would not be affected by the EMI found in most switched power converters. Matrices of the light emissions at 370, 380, 390, 400, 440, and 550 nm wavelengths over a range of 0.2 A to 4 A and 20 °C to 110 °C were used to develop best-fit polynomials for each matrix. Two of these polynomials can then be utilized to derive a unique solution of current and temperature based on the light output at the distinct wavelengths. Lock-in amplifiers allowed the amplification of weak light signals without gain bandwidth product limitations. Future efforts will be to duplicate the lock-in amplifier as well as the current and temperature prediction with use of a microcontroller.Lieutenant, United States NavyApproved for public release; distribution is unlimited

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    Multichannel Sampling of Pulse Streams at the Rate of Innovation

    Full text link
    We consider minimal-rate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of infinite pulse streams was treated in previous works, either the rate of innovation was not achieved, or the pulse shape was limited to Diracs. In this paper we propose a multichannel architecture for sampling pulse streams with arbitrary shape, operating at the rate of innovation. Our approach is based on modulating the input signal with a set of properly chosen waveforms, followed by a bank of integrators. This architecture is motivated by recent work on sub-Nyquist sampling of multiband signals. We show that the pulse stream can be recovered from the proposed minimal-rate samples using standard tools taken from spectral estimation in a stable way even at high rates of innovation. In addition, we address practical implementation issues, such as reduction of hardware complexity and immunity to failure in the sampling channels. The resulting scheme is flexible and exhibits better noise robustness than previous approaches

    Terahertz sampling rates with photonic time-stretch for electron beam diagnostics

    Get PDF
    To understand the underlying complex beam dynamics in electron storage rings often large numbers of single-shot measurements must be acquired continuously over a long period of time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of conventional digitizers and enable continuous ultra-fast single-shot terahertz spectroscopy with rates of trillions of consecutive frames. In this contribution, a novel ultra-fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth of up to 20 GHz and a sampling rate of up to 90 GS s−1. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 Tf s−1. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas
    • …
    corecore