2,025 research outputs found

    A Simple PTAS for the Dual Bin Packing Problem and Advice Complexity of Its Online Version

    Get PDF
    Recently, Renault (2016) studied the dual bin packing problem in the per-request advice model of online algorithms. He showed that given O(1/eps) advice bits for each input item allows approximating the dual bin packing problem online to within a factor of 1+eps. Renault asked about the advice complexity of dual bin packing in the tape-advice model of online algorithms. We make progress on this question. Let s be the maximum bit size of an input item weight. We present a conceptually simple online algorithm that with total advice O((s + log n)/eps^2) approximates the dual bin packing to within a 1+eps factor. To this end, we describe and analyze a simple offline PTAS for the dual bin packing problem. Although a PTAS for a more general problem was known prior to our work (Kellerer 1999, Chekuri and Khanna 2006), our PTAS is arguably simpler to state and analyze. As a result, we could easily adapt our PTAS to obtain the advice-complexity result. We also consider whether the dependence on s is necessary in our algorithm. We show that if s is unrestricted then for small enough eps > 0 obtaining a 1+eps approximation to the dual bin packing requires Omega_eps(n) bits of advice. To establish this lower bound we analyze an online reduction that preserves the advice complexity and approximation ratio from the binary separation problem due to Boyar et al. (2016). We define two natural advice complexity classes that capture the distinction similar to the Turing machine world distinction between pseudo polynomial time algorithms and polynomial time algorithms. Our results on the dual bin packing problem imply the separation of the two classes in the advice complexity world

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF
    While randomized online algorithms have access to a sequence of uniform random bits, deterministic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are set by an all powerful oracle prior to the processing of the request sequence. Advice bits are at least as helpful as random bits, but how helpful are they? In this work, we investigate the power of advice bits and random bits for online maximum bipartite matching (MBM). The well-known Karp-Vazirani-Vazirani algorithm is an optimal randomized (11e)(1-\frac{1}{e})-competitive algorithm for \textsc{MBM} that requires access to Θ(nlogn)\Theta(n \log n) uniform random bits. We show that Ω(log(1ϵ)n)\Omega(\log(\frac{1}{\epsilon}) n) advice bits are necessary and O(1ϵ5n)O(\frac{1}{\epsilon^5} n) sufficient in order to obtain a (1ϵ)(1-\epsilon)-competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic advice algorithms, we prove that Ω(logloglogn)\Omega(\log \log \log n) advice bits are required in order to improve on the 12\frac{1}{2}-competitiveness of the best deterministic online algorithm, while it is known that O(logn)O(\log n) bits are sufficient. Last, we give a randomized online algorithm that uses cnc n random bits, for integers c1c \ge 1, and a competitive ratio that approaches 11e1-\frac{1}{e} very quickly as cc is increasing. For example if c=10c = 10, then the difference between 11e1-\frac{1}{e} and the achieved competitive ratio is less than 0.00020.0002

    The Advice Complexity of a Class of Hard Online Problems

    Get PDF
    The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that log(1+(c1)c1/cc)n=Θ(n/c)\log\left(1+(c-1)^{c-1}/c^{c}\right)n=\Theta (n/c) bits of advice are necessary and sufficient (up to an additive term of O(logn)O(\log n)) to achieve a competitive ratio of cc. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (TCS 2011) and B\"ockenhauer et al. (TCS 2014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halld\'orsson et al. (TCS 2002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c)\Theta (n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, B\"ockenhauer et al. (ISAAC 2009) gave a lower bound of Ω(n/c)\Omega (n/c) and an upper bound of O((nlogc)/c)O((n\log c)/c) on the advice complexity. We improve on the upper bound by a factor of logc\log c. For the remaining problems, no bounds on their advice complexity were previously known.Comment: Full paper to appear in Theory of Computing Systems. A preliminary version appeared in STACS 201

    Online Bin Covering with Exact Parameter Advice

    Full text link
    We show an asymptotic 2/3-competitive strategy for the bin covering problem using O(b+log n) bits of advice, where b is the number of bits used to encode a rational value and n is the length of the input sequence.Comment: 10 pages, 2 figure, submitted to Informatic

    Algorithms for on-line bin covering problem

    Get PDF

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn
    corecore