15,101 research outputs found

    Distributed Market Clearing Approach for Local Energy Trading in Transactive Market

    Full text link
    This paper proposes a market clearing mechanism for energy trading in a local transactive market, where each player can participate in the market as seller or buyer and tries to maximize its welfare individually. Market players send their demand and supply to a local data center, where clearing price is determined to balance demand and supply. The topology of the grid and associated network constraints are considered to compute a price signal in the data center to keep the system secure by applying this signal to the corresponding players. The proposed approach needs only the demanded/supplied power by each player to reach global optimum which means that utility and cost function parameters would remain private. Also, this approach uses distributed method by applying local market clearing price as coordination information and direct load flow (DLF) for power flow calculation saving computation resources and making it suitable for online and automatic operation for a market with a large number of players. The proposed method is tested on a market with 50 players and simulation results show that the convergence is guaranteed and the proposed distributed method can reach the same result as conventional centralized approach.Comment: Accepted paper. To appear in PESGM 2018, Portland, OR, 201

    Disaggregated Bundle Methods for Distributed Market Clearing in Power Networks

    Full text link
    A fast distributed approach is developed for the market clearing with large-scale demand response in electric power networks. In addition to conventional supply bids, demand offers from aggregators serving large numbers of residential smart appliances with different energy constraints are incorporated. Leveraging the Lagrangian relaxation based dual decomposition, the resulting optimization problem is decomposed into separate subproblems, and then solved in a distributed fashion by the market operator and each aggregator aided by the end-user smart meters. A disaggregated bundle method is adapted for solving the dual problem with a separable structure. Compared with the conventional dual update algorithms, the proposed approach exhibits faster convergence speed, which results in reduced communication overhead. Numerical results corroborate the effectiveness of the novel approach.Comment: To appear in GlobalSIP 201

    Distributed Stochastic Market Clearing with High-Penetration Wind Power

    Full text link
    Integrating renewable energy into the modern power grid requires risk-cognizant dispatch of resources to account for the stochastic availability of renewables. Toward this goal, day-ahead stochastic market clearing with high-penetration wind energy is pursued in this paper based on the DC optimal power flow (OPF). The objective is to minimize the social cost which consists of conventional generation costs, end-user disutility, as well as a risk measure of the system re-dispatching cost. Capitalizing on the conditional value-at-risk (CVaR), the novel model is able to mitigate the potentially high risk of the recourse actions to compensate wind forecast errors. The resulting convex optimization task is tackled via a distribution-free sample average based approximation to bypass the prohibitively complex high-dimensional integration. Furthermore, to cope with possibly large-scale dispatchable loads, a fast distributed solver is developed with guaranteed convergence using the alternating direction method of multipliers (ADMM). Numerical results tested on a modified benchmark system are reported to corroborate the merits of the novel framework and proposed approaches.Comment: To appear in IEEE Transactions on Power Systems; 12 pages and 9 figure

    Chain: A Dynamic Double Auction Framework for Matching Patient Agents

    Get PDF
    In this paper we present and evaluate a general framework for the design of truthful auctions for matching agents in a dynamic, two-sided market. A single commodity, such as a resource or a task, is bought and sold by multiple buyers and sellers that arrive and depart over time. Our algorithm, Chain, provides the first framework that allows a truthful dynamic double auction (DA) to be constructed from a truthful, single-period (i.e. static) double-auction rule. The pricing and matching method of the Chain construction is unique amongst dynamic-auction rules that adopt the same building block. We examine experimentally the allocative efficiency of Chain when instantiated on various single-period rules, including the canonical McAfee double-auction rule. For a baseline we also consider non-truthful double auctions populated with zero-intelligence plus"-style learning agents. Chain-based auctions perform well in comparison with other schemes, especially as arrival intensity falls and agent valuations become more volatile

    Revisiting minimum profit conditions in uniform price day-ahead electricity auctions

    Full text link
    We examine the problem of clearing day-ahead electricity market auctions where each bidder, whether a producer or consumer, can specify a minimum profit or maximum payment condition constraining the acceptance of a set of bid curves spanning multiple time periods in locations connected through a transmission network with linear constraints. Such types of conditions are for example considered in the Spanish and Portuguese day-ahead markets. This helps describing the recovery of start-up costs of a power plant, or analogously for a large consumer, utility reduced by a constant term. A new market model is proposed with a corresponding MILP formulation for uniform locational price day-ahead auctions, handling bids with a minimum profit or maximum payment condition in a uniform and computationally-efficient way. An exact decomposition procedure with sparse strengthened Benders cuts derived from the MILP formulation is also proposed. The MILP formulation and the decomposition procedure are similar to computationally-efficient approaches previously proposed to handle so-called block bids according to European market rules, though the clearing conditions could appear different at first sight. Both solving approaches are also valid to deal with both kinds of bids simultaneously, as block bids with a minimum acceptance ratio, generalizing fully indivisible block bids, are but a special case of the MP bids introduced here. We argue in favour of the MP bids by comparing them to previous models for minimum profit conditions proposed in the academic literature, and to the model for minimum income conditions used by the Spanish power exchange OMIE

    Simulating interbank payment and securities settlement mechanisms with the BoF-PSS2 simulator

    Get PDF
    The simulation technique provides a new means for analysing complex interdependencies in payment and securities settlement processing. The Bank of Finland has developed a payment and settlement system simulator (BoF-PSS2) that can be used for constructing simulation models of payment and securities settlement systems. This paper describes the main elements of payment and settlement systems (system structures, interdependencies, processing steps, liquidity consumption, cost and risk dimensions) and how these can be treated in simulation studies. It gives also examples on how these elements have been incorporated in the simulator, as well as an overview of the structure and the features of the BoF-PSS2 simulator.simulations; simulator; payment systems; clearing/settlement; liquidity
    corecore