190,626 research outputs found

    Online Algorithms for Multi-Level Aggregation

    Full text link
    In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted tree T, and have to be served eventually. A service is defined as a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems; for example, for trees of depth 1, MLAP is equivalent to the TCP Acknowledgment Problem, while for trees of depth 2, it is equivalent to the Joint Replenishment Problem. Aggregation problem for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and in supply-chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant competitive online algorithm for networks of arbitrary (fixed) number of levels. The competitive ratio is O(D^4 2^D), where D is the depth of T. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines. We also show several additional lower and upper bound results for some special cases of MLAP, including the Single-Phase variant and the case when the tree is a path

    Random Forests for Big Data

    Get PDF
    Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to "divide-and-conquer" approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations

    Improved Fair-Zone technique using Mobility Prediction in WSN

    Full text link
    The self-organizational ability of ad-hoc Wireless Sensor Networks (WSNs) has led them to be the most popular choice in ubiquitous computing. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. It has some limitation in energy and mobility of nodes. In this paper we propose a mobility prediction technique which tries overcoming above mentioned problems and improves the life time of the network. The technique used here is Exponential Moving Average for online updates of nodal contact probability in cluster based network.Comment: 10 pages, 7 figures, Published in International Journal Of Advanced Smart Sensor Network Systems (IJASSN

    Online algorithms for multi-level aggregation

    Get PDF
    In the multilevel aggregation problem (MLAP), requests arrive at the nodes of an edge-weighted tree T and have to be served eventually. A service is defined as a subtree X of T that contains the root of T. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems; for example, for trees of depth 1, MLAP is equivalent to the Transmission Control Protocol acknowledgment problem, whereas for trees of depth 2, it is equivalent to the joint replenishment problem. Aggregation problems for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and supply chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant-competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant-competitive online algorithm for trees of arbitrary (fixed) depth. The competitive ratio is O(D42D), where D is the depth of T. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines

    Do They Want to Regulate Online Profiling?

    Get PDF
    Online profiling or behavioural tracking is the process by which private companies track and gather data about users’ activities in online platforms. The data collected by all the companies is aggregated with the purpose of creating a comprehensive profile about users. Since at least 15 years ago, there have been several attempts to regulate online profiling in order to reduce its privacy implications. In general, these regulations have tried to limit the way the information is used, the type of data that is collected, and impose or suggest the security standards that the companies should take to protect it. This article will demonstrate that the proposed regulations do not reduce online profiling’s privacy repercussions. In addition, it will argue that in order to reduce privacy repercussions it is necessary to regulate the aggregation and commercialization of the data. However, governments, industries, and users may not have enough incentives to find alternative methods or effective regulations to address the problems raised by online profiling
    corecore