448 research outputs found

    Two-stage sparse representation based abnormal crowd event detection in videos

    Get PDF
    Ubiquitous surveillance has become part of our lives to increase security and safety. Despite the wide application of surveillance systems, their efficiency is limited by human factors, such as boredom and fatigue; because most of the time, nothing unusual happens. In safety-critical applications, time is essential and it is vital to act fast to prevent costly incidents. This thesis proposes a two-stage abnormal crowd event detection framework based on k-means clustering in the first stage, and sparse representation based methods in the second stage, to alleviate the laborious task of video monitoring. We conduct a literature review of 18 studies, where we specifically focus on sparse representation based methods. Accordingly, we choose the spatio-temporal gradient feature due to its simplicity, efficiency, and effectiveness in motion representation. After extracting features only from normal events, k-means clustering is applied to separate different motion feature clusters. Then, clusters with smaller samples, which are deemed to contain mostly abnormal features, are removed according to a threshold. In the second stage, we learn a dictionary for each remaining cluster using the approximate K-SVD algorithm. In testing, the reconstruction error of a feature against a learned dictionary and its sparse representation is used to determine an abnormality. We conduct extensive experiments on a standard dataset to evaluate the detection performance of the method. Furthermore, the effect of hyper-parameters in our method is investigated. We also compare our method with different methods to examine its effectiveness. Results indicate that our abnormal event detection framework can successfully understand abnormal events in a scene while running in real-time at 161 frames per second. With a few exceptions, no significant advantage of the two-stage sparse representation approach over a single large dictionary was found. We speculate that these results may be influenced by a small sample size. Nevertheless, our approach, due to its unsupervised nature, can be adapted to different contexts without additional annotation effort and using only normal events from videos. Therefore it motivates us for further development

    A Novel Multi-Focus Image Fusion Method Based on Stochastic Coordinate Coding and Local Density Peaks Clustering

    Get PDF
    abstract: The multi-focus image fusion method is used in image processing to generate all-focus images that have large depth of field (DOF) based on original multi-focus images. Different approaches have been used in the spatial and transform domain to fuse multi-focus images. As one of the most popular image processing methods, dictionary-learning-based spare representation achieves great performance in multi-focus image fusion. Most of the existing dictionary-learning-based multi-focus image fusion methods directly use the whole source images for dictionary learning. However, it incurs a high error rate and high computation cost in dictionary learning process by using the whole source images. This paper proposes a novel stochastic coordinate coding-based image fusion framework integrated with local density peaks. The proposed multi-focus image fusion method consists of three steps. First, source images are split into small image patches, then the split image patches are classified into a few groups by local density peaks clustering. Next, the grouped image patches are used for sub-dictionary learning by stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse representation. Finally, the simultaneous orthogonal matching pursuit (SOMP) algorithm is used to carry out sparse representation. After the three steps, the obtained sparse coefficients are fused following the max L1-norm rule. The fused coefficients are inversely transformed to an image by using the learned dictionary. The results and analyses of comparison experiments demonstrate that fused images of the proposed method have higher qualities than existing state-of-the-art methods

    Dynamic Local Aggregation Network with Adaptive Clusterer for Anomaly Detection

    Full text link
    Existing methods for anomaly detection based on memory-augmented autoencoder (AE) have the following drawbacks: (1) Establishing a memory bank requires additional memory space. (2) The fixed number of prototypes from subjective assumptions ignores the data feature differences and diversity. To overcome these drawbacks, we introduce DLAN-AC, a Dynamic Local Aggregation Network with Adaptive Clusterer, for anomaly detection. First, The proposed DLAN can automatically learn and aggregate high-level features from the AE to obtain more representative prototypes, while freeing up extra memory space. Second, The proposed AC can adaptively cluster video data to derive initial prototypes with prior information. In addition, we also propose a dynamic redundant clustering strategy (DRCS) to enable DLAN for automatically eliminating feature clusters that do not contribute to the construction of prototypes. Extensive experiments on benchmarks demonstrate that DLAN-AC outperforms most existing methods, validating the effectiveness of our method. Our code is publicly available at https://github.com/Beyond-Zw/DLAN-AC.Comment: Accepted by ECCV 202

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    MoWLD: a robust motion image descriptor for violence detection

    Full text link
    © 2015, Springer Science+Business Media New York. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in designing an algorithm that can detect violence in surveillance videos with high performance. Existing methods typically apply the Bag-of-Words (BoW) model on local spatiotemporal descriptors. However, traditional spatiotemporal features are not discriminative enough, and also the BoW model roughly assigns each feature vector to only one visual word and therefore ignores the spatial relationships among the features. To tackle these problems, in this paper we propose a novel Motion Weber Local Descriptor (MoWLD) in the spirit of the well-known WLD and make it a powerful and robust descriptor for motion images. We extend the WLD spatial descriptions by adding a temporal component to the appearance descriptor, which implicitly captures local motion information as well as low-level image appear information. To eliminate redundant and irrelevant features, the non-parametric Kernel Density Estimation (KDE) is employed on the MoWLD descriptor. In order to obtain more discriminative features, we adopt the sparse coding and max pooling scheme to further process the selected MoWLDs. Experimental results on three benchmark datasets have demonstrated the superiority of the proposed approach over the state-of-the-arts

    Featured Anomaly Detection Methods and Applications

    Get PDF
    Anomaly detection is a fundamental research topic that has been widely investigated. From critical industrial systems, e.g., network intrusion detection systems, to people’s daily activities, e.g., mobile fraud detection, anomaly detection has become the very first vital resort to protect and secure public and personal properties. Although anomaly detection methods have been under consistent development over the years, the explosive growth of data volume and the continued dramatic variation of data patterns pose great challenges on the anomaly detection systems and are fuelling the great demand of introducing more intelligent anomaly detection methods with distinct characteristics to cope with various needs. To this end, this thesis starts with presenting a thorough review of existing anomaly detection strategies and methods. The advantageous and disadvantageous of the strategies and methods are elaborated. Afterward, four distinctive anomaly detection methods, especially for time series, are proposed in this work aiming at resolving specific needs of anomaly detection under different scenarios, e.g., enhanced accuracy, interpretable results, and self-evolving models. Experiments are presented and analysed to offer a better understanding of the performance of the methods and their distinct features. To be more specific, the abstracts of the key contents in this thesis are listed as follows: 1) Support Vector Data Description (SVDD) is investigated as a primary method to fulfill accurate anomaly detection. The applicability of SVDD over noisy time series datasets is carefully examined and it is demonstrated that relaxing the decision boundary of SVDD always results in better accuracy in network time series anomaly detection. Theoretical analysis of the parameter utilised in the model is also presented to ensure the validity of the relaxation of the decision boundary. 2) To support a clear explanation of the detected time series anomalies, i.e., anomaly interpretation, the periodic pattern of time series data is considered as the contextual information to be integrated into SVDD for anomaly detection. The formulation of SVDD with contextual information maintains multiple discriminants which help in distinguishing the root causes of the anomalies. 3) In an attempt to further analyse a dataset for anomaly detection and interpretation, Convex Hull Data Description (CHDD) is developed for realising one-class classification together with data clustering. CHDD approximates the convex hull of a given dataset with the extreme points which constitute a dictionary of data representatives. According to the dictionary, CHDD is capable of representing and clustering all the normal data instances so that anomaly detection is realised with certain interpretation. 4) Besides better anomaly detection accuracy and interpretability, better solutions for anomaly detection over streaming data with evolving patterns are also researched. Under the framework of Reinforcement Learning (RL), a time series anomaly detector that is consistently trained to cope with the evolving patterns is designed. Due to the fact that the anomaly detector is trained with labeled time series, it avoids the cumbersome work of threshold setting and the uncertain definitions of anomalies in time series anomaly detection tasks
    • …
    corecore