9,089 research outputs found

    Leveraging Smartphone Sensor Data for Human Activity Recognition

    Get PDF
    Using smartphones for human activity recognition (HAR) has a wide range of applications including healthcare, daily fitness recording, and anomalous situations alerting. This study focuses on human activity recognition based on smartphone embedded sensors. The proposed human activity recognition system recognizes activities including walking, running, sitting, going upstairs, and going downstairs. Embedded sensors (a tri-axial accelerometer and a gyroscope sensor) are employed for motion data collection. Both time-domain and frequency-domain features are extracted and analyzed. Our experiment results show that time-domain features are good enough to recognize basic human activities. The system is implemented in an Android smartphone platform. While the focus has been on human activity recognition systems based on a supervised learning approach, an incremental clustering algorithm is investigated. The proposed unsupervised (clustering) activity detection scheme works in an incremental manner, which contains two stages. In the first stage, streamed sensor data will be processed. A single-pass clustering algorithm is used to generate pre-clustered results for the next stage. In the second stage, pre-clustered results will be refined to form the final clusters, which means the clusters are built incrementally by adding one cluster at a time. Experiments on smartphone sensor data of five basic human activities show that the proposed scheme can get comparable results with traditional clustering algorithms but working in a streaming and incremental manner. In order to develop more accurate activity recognition systems independent of smartphone models, effects of sensor differences across various smartphone models are investigated. We present the impairments of different smartphone embedded sensor models on HAR applications. Outlier removal, interpolation, and filtering in pre-processing stage are proposed as mitigating techniques. Based on datasets collected from four distinct smartphones, the proposed mitigating techniques show positive effects on 10-fold cross validation, device-to-device validation, and leave-one-out validation. Improved performance for smartphone based human activity recognition is observed. With the efforts of developing human activity recognition systems based on supervised learning approach, investigating a clustering based incremental activity recognition system with its potential applications, and applying techniques for alleviating sensor difference effects, a robust human activity recognition system can be trained in either supervised or unsupervised way and can be adapted to multiple devices with being less dependent on different sensor specifications

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions
    • …
    corecore