4,574 research outputs found

    Learning to Embed Words in Context for Syntactic Tasks

    Full text link
    We present models for embedding words in the context of surrounding words. Such models, which we refer to as token embeddings, represent the characteristics of a word that are specific to a given context, such as word sense, syntactic category, and semantic role. We explore simple, efficient token embedding models based on standard neural network architectures. We learn token embeddings on a large amount of unannotated text and evaluate them as features for part-of-speech taggers and dependency parsers trained on much smaller amounts of annotated data. We find that predictors endowed with token embeddings consistently outperform baseline predictors across a range of context window and training set sizes.Comment: Accepted by ACL 2017 Repl4NLP worksho

    Attentive Tensor Product Learning

    Full text link
    This paper proposes a new architecture - Attentive Tensor Product Learning (ATPL) - to represent grammatical structures in deep learning models. ATPL is a new architecture to bridge this gap by exploiting Tensor Product Representations (TPR), a structured neural-symbolic model developed in cognitive science, aiming to integrate deep learning with explicit language structures and rules. The key ideas of ATPL are: 1) unsupervised learning of role-unbinding vectors of words via TPR-based deep neural network; 2) employing attention modules to compute TPR; and 3) integration of TPR with typical deep learning architectures including Long Short-Term Memory (LSTM) and Feedforward Neural Network (FFNN). The novelty of our approach lies in its ability to extract the grammatical structure of a sentence by using role-unbinding vectors, which are obtained in an unsupervised manner. This ATPL approach is applied to 1) image captioning, 2) part of speech (POS) tagging, and 3) constituency parsing of a sentence. Experimental results demonstrate the effectiveness of the proposed approach

    Marrying Universal Dependencies and Universal Morphology

    Full text link
    The Universal Dependencies (UD) and Universal Morphology (UniMorph) projects each present schemata for annotating the morphosyntactic details of language. Each project also provides corpora of annotated text in many languages - UD at the token level and UniMorph at the type level. As each corpus is built by different annotators, language-specific decisions hinder the goal of universal schemata. With compatibility of tags, each project's annotations could be used to validate the other's. Additionally, the availability of both type- and token-level resources would be a boon to tasks such as parsing and homograph disambiguation. To ease this interoperability, we present a deterministic mapping from Universal Dependencies v2 features into the UniMorph schema. We validate our approach by lookup in the UniMorph corpora and find a macro-average of 64.13% recall. We also note incompatibilities due to paucity of data on either side. Finally, we present a critical evaluation of the foundations, strengths, and weaknesses of the two annotation projects.Comment: UDW1
    • …
    corecore