46 research outputs found

    Tracking and Grasping of Moving Objects Using Aerial Robotic Manipulators: A Brief Survey

    Get PDF
    Unmanned Aerial Vehicles (UAV) has evolved in recent years, their features have changed to be more useful to the society, although some years ago the drones had been thought to be teleoperated by humans and to take some pictures from above, which is useful; nevertheless, nowadays the drones are capable of developing autonomous tasks like tracking a dynamic target or even grasping different kind of objects. Some task like transporting heavy loads or manipulating complex shapes are more challenging for a single UAV, but for a fleet of them might be easier. This brief survey presents a compilation of relevant works related to tracking and grasping with aerial robotic manipulators, as well as cooperation among them. Moreover, challenges and limitations are presented in order to contribute with new areas of research. Finally, some trends in aerial manipulation are foreseeing for different sectors and relevant features for these kind of systems are standing out

    TRAJECTORY GENERATION BASED GUIDANCE AND CONTROL OF ROTORCRAFT UNMANNED AERIAL VEHICLES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning
    corecore