8,038 research outputs found

    High quality testing of grid style power gating

    No full text
    This paper shows that existing delay-based testing techniques for power gating exhibit fault coverage loss due to unconsidered delays introduced by the structure of the virtual voltage power-distribution-network (VPDN). To restore this loss, which could reach up to 70.3% on stuck-open faults, we propose a design-for-testability (DFT) logic that considers the impact of VPDN on fault coverage in order to constitute the proper interface between the VPDN and the DFT. The proposed logic can be easily implemented on-top of existing DFT solutions and its overhead is optimized by an algorithm that offers trade-off flexibility between test-application-time and hardware overhead. Through physical layout SPICE simulations, we show complete fault coverage recovery on stuck-open faults and 43.2% test-application-time improvement compared to a previously proposed DFT technique. To the best of our knowledge, this paper presents the first analysis of the VPDN impact on test qualit

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Advanced information processing system: Local system services

    Get PDF
    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented

    Delay test for diagnosis of power switches

    Get PDF
    Power switches are used as part of power-gating technique to reduce leakage power of a design. To the best of our knowledge, this is the first work in open-literature to show a systematic diagnosis method for accurately diagnosingpower switches. The proposed diagnosis method utilizes recently proposed DFT solution for efficient testing of power switches in the presence of PVT variation. It divides power switches into segments such that any faulty power switch is detectable thereby achieving high diagnosis accuracy. The proposed diagnosis method has been validated through SPICE simulation using a number of ISCAS benchmarks synthesized with a 90-nm gate library. Simulation results show that when considering the influence of process variation, the worst case loss of accuracy is less than 4.5%; and the worst case loss of accuracy is less than 12% when considering VT (Voltage and Temperature) variations

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Case study: Bio-inspired self-adaptive strategy for spike-based PID controller

    Get PDF
    A key requirement for modern large scale neuromorphic systems is the ability to detect and diagnose faults and to explore self-correction strategies. In particular, to perform this under area-constraints which meet scalability requirements of large neuromorphic systems. A bio-inspired online fault detection and self-correction mechanism for neuro-inspired PID controllers is presented in this paper. This strategy employs a fault detection unit for online testing of the PID controller; uses a fault detection manager to perform the detection procedure across multiple controllers, and a controller selection mechanism to select an available fault-free controller to provide a corrective step in restoring system functionality. The novelty of the proposed work is that the fault detection method, using synapse models with excitatory and inhibitory responses, is applied to a robotic spike-based PID controller. The results are presented for robotic motor controllers and show that the proposed bioinspired self-detection and self-correction strategy can detect faults and re-allocate resources to restore the controller’s functionality. In particular, the case study demonstrates the compactness (~1.4% area overhead) of the fault detection mechanism for large scale robotic controllers.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Digital Signatures for PTP Using Transparent Clocks

    Get PDF
    Smart grids use synchronous real-time measurements from phasor measurement units (PMU) across portions of a grid to provide grid-wide integrity. Achieving synchronicity requires either accurate GPS clocks at each PMU or a high-resolution clock synchronization protocol, such as the Precision Time Protocol (PTP), specified in IEEE 1588 with the power profile in IEEE C37.238-2011. PTP does not natively include measures to provide authenticity or integrity for timestamps transmitted across an Ethernet network, though there has been recent work in providing end-to-end integrity of transmitted timestamps. However, PTP for use in the smart grid requires a version of the protocol in which network switches update the trusted timestamp in flight, meaning that an end-to-end approach is no longer sufficient. We propose two methods to provide for the integrity of the transmitted and updated timestamps as well as to ensure the authority of all network devices altering the time. In the first, we amend the PTP standard to include signatures as part of the time packet itself at the cost of increased jitter in the system. In the second, we transmit these signatures over a wireless network, reducing congestion on the original network. We test both methods on a simulated PTP switch intended for experimentation only and demonstrate that the use of a second network dedicated to verification-related information is better for current networks, as including signatures in the original packet causes more jitter than is acceptable for synchronizing PMUs in particular

    DFT Architecture with Power-Distribution-Network Consideration for Delay-based Power Gating Test

    Get PDF
    This paper shows that existing delay-based testing techniques for power gating exhibit both fault coverage and yield loss due to deviations at the charging delay introduced by the distributed nature of the power-distribution-networks (PDNs). To restore this test quality loss, which could reach up to 67.7% of false passes and 25% of false fails due to stuck-open faults, we propose a design-for-testability (DFT) logic that accounts for a distributed PDN. The proposed logic is optimized by an algorithm that also handles uncertainty due to process variations and offers trade-off flexibility between test-application time and area cost. A calibration process is proposed to bridge model-to-hardware discrepancies and increase test quality when considering systematic variations. Through SPICE simulations, we show complete recovery of the test quality lost due to PDNs. The proposed method is robust sustaining 80.3% to 98.6% of the achieved test quality under high random and systematic process variations. To the best of our knowledge, this paper presents the first analysis of the PDN impact on test quality and offers a unified test solution for both ring and grid power gating styles

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language
    corecore