93 research outputs found

    Synthesis and testing of reversible Toffoli circuits

    Get PDF
    xii, 82 leaves : ill. ; 29 cmRecently, researchers have been interested in reversible computing because of its ability to dissipate nearly zero heat and because of its applications in quantum computing and low power VLSI design. Synthesis and testing are two important areas of reversible logic. The thesis first presents an approach for the synthesis of reversible circuits from the exclusive- OR sum-of-products (ESOP) representation of functions, which makes better use of shared functionality among multiple outputs, resulting in up to 75% minimization of quantum cost compared to the previous approach. This thesis also investigates the previous work on constructing the online testable circuits and points out some design issues. A simple approach for online fault detection is proposed for a particular type of ESOP-based reversible circuit, which is also extended for any type of Toffoli circuits. The proposed online testable designs not only address the problems of the previous designs but also achieve significant improvements of up to 78% and 99% in terms of quantum cost and garbage outputs, respectively

    Testable Design for Positive Control Flipping Faults in Reversible Circuits

    Get PDF
    Fast computational power is a major concern in every computing system. The advancement of the fabrication process in the present semiconductor technologies provides to accommodate millions of gates per chip and is also capable of reducing the size of the chips. Concurrently, the complex circuit design always leads to high power dissipation and increases the fault rates. Due to these difficulties, researchers explore the reversible logic circuit as an alternative way to implement the low-power circuit design. It is also widely applied in recent technology trends like quantum computing. Analyzing the correct functional behavior of these circuits is an essential requirement in the testing of the circuit. This paper presents a testable design for the k-CNOT based circuit capable of diagnosing the Positive Control Flipping Faults (PCFFs) in reversible circuits. The proposed work shows that generating a single test vector that applies to the constructed design circuit is sufficient for covering the PCFFs in the reversible circuit. Further, the parity-bit operations are augmented to the constructed testable circuit that produces the parity-test pattern to extract the faulty gate location of PCFFs. Various reversible benchmark circuits are used for evaluating the experimental results to establish the correctness of the proposed fault diagnosis technique. Also a comparative analysis is performed with the existing work

    Online testing in ternary reversible logic

    Get PDF
    xii, 92 leaves : ill. ; 29 cmIn recent years ternary reversible logic has caught the attention of researchers because of its enormous potential in different fields, in particular quantum computing. It is desirable that any future reversible technology should be fault tolerant and have low power consumption; hence developing testing techniques in this area is of great importance. In this work we propose a design for an online testable ternary reversible circuit. The proposed design can implement almost all of the ternary logic operations and is also capable of testing the reversible ternary network in real time (online). The error detection unit is also constructed in a reversible manner, which results in an overall circuit which meets the requirements of reversible computing. We have also proposed an upgrade of the initial design to make the design more optimized. Several ternary benchmark circuits have been implemented using the proposed approaches. The number of gates required to implement the benchmarks for each approach have also been compared. To our knowledge this is the first such circuit in ternary with integrated online testability feature

    Logic Theory in Designing of Digital Circuit & Microprocessor

    Get PDF
    This Paper Provides basic fundamentals to be used while designing logic gates in a digital circuit as we know that logic gates are nothing but the technique used for calculation of unknown’s also provide how microprocessor instruction set is get affected due designing of logical gates. Instruction sets are used for simulative approach of digital circuit in Microprocessor which is later used in assembly language programming. Logic gates are constructed using diodes or transistors, but can also be constructed using electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or some of mechanical elements also plays important role in the construction of logic gates . Connecting output of fist logic gate into input of second create cascading with amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic also paper deals with correlation between digital electronics and microprocessor

    Design for testability of a latch-based design

    Get PDF
    Abstract. The purpose of this thesis was to decrease the area of digital logic in a power management integrated circuit (PMIC), by replacing selected flip-flops with latches. The thesis consists of a theory part, that provides background theory for the thesis, and a practical part, that presents a latch register design and design for testability (DFT) method for achieving an acceptable level of manufacturing fault coverage for it. The total area was decreased by replacing flip-flops of read-write and one-time programmable registers with latches. One set of negative level active primary latches were shared with all the positive level active latch registers in the same register bank. Clock gating was used to select which latch register the write data was loaded to from the primary latches. The latches were made transparent during the shift operation of partial scan testing. The observability of the latch register clock gating logic was improved by leaving the first bit of each latch register as a flip-flop. The controllability was improved by inserting control points. The latch register design, developed in this thesis, resulted in a total area decrease of 5% and a register bank area decrease of 15% compared to a flip-flop-based reference design. The latch register design manages to maintain the same stuck-at fault coverage as the reference design.Salpaperäisen piirin testattavuuden suunnittelu. Tiivistelmä. Tämän opinnäytetyön tarkoituksena oli pienentää digitaalisen logiikan pinta-alaa integroidussa tehonhallintapiirissä, korvaamalla valitut kiikut salpapiireillä. Opinnäytetyö koostuu teoriaosasta, joka antaa taustatietoa opinnäytetyölle, ja käytännön osuudesta, jossa esitellään salparekisteripiiri ja testattavuussuunnittelun menetelmä, jolla saavutettiin riittävän hyvä virhekattavuus salparekisteripiirille. Kokonaispinta-alaa pienennettiin korvaamalla luku-kirjoitusrekistereiden ja kerran ohjelmoitavien rekistereiden kiikut salpapiireillä. Yhdet negatiivisella tasolla aktiiviset isäntä-salpapiirit jaettiin kaikkien samassa rekisteripankissa olevien positiivisella tasolla aktiivisten salparekistereiden kanssa. Kellon portittamisella valittiin mihin salparekisteriin kirjoitusdata ladattiin yhteisistä isäntä-salpapireistä. Osittaisessa testipolkuihin perustuvassa testauksessa salpapiirit tehtiin läpinäkyviksi siirtooperaation aikana. Salparekisterin kellon portituslogiikan havaittavuutta parannettiin jättämällä jokaisen salparekisterin ensimmäinen bitti kiikuksi. Ohjattavuutta parannettiin lisäämällä ohjauspisteitä. Salparekisteripiiri, joka suunniteltiin tässä diplomityössä, pienensi kokonaispinta-alaa 5 % ja rekisteripankin pinta-alaa 15 % verrattuna kiikkuperäiseen vertailupiiriin. Salparekisteripiiri onnistuu pitämään saman juuttumisvikamallin virhekattavuuden kuin vertailupiiri

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore