2,706 research outputs found

    Modified Frank-Wolfe Algorithm for Enhanced Sparsity in Support Vector Machine Classifiers

    Full text link
    This work proposes a new algorithm for training a re-weighted L2 Support Vector Machine (SVM), inspired on the re-weighted Lasso algorithm of Cand\`es et al. and on the equivalence between Lasso and SVM shown recently by Jaggi. In particular, the margin required for each training vector is set independently, defining a new weighted SVM model. These weights are selected to be binary, and they are automatically adapted during the training of the model, resulting in a variation of the Frank-Wolfe optimization algorithm with essentially the same computational complexity as the original algorithm. As shown experimentally, this algorithm is computationally cheaper to apply since it requires less iterations to converge, and it produces models with a sparser representation in terms of support vectors and which are more stable with respect to the selection of the regularization hyper-parameter

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    A comparison of four data selection methods for artificial neural networks and support vector machines

    Get PDF
    The performance of data-driven models such as Artificial Neural Networks and Support Vector Machines relies to a good extent on selecting proper data throughout the design phase. This paper addresses a comparison of four unsupervised data selection methods including random, convex hull based, entropy based and a hybrid data selection method. These methods were evaluated on eight benchmarks in classification and regression problems. For classification, Support Vector Machines were used, while for the regression problems, Multi-Layer Perceptrons were employed. Additionally, for each problem type, a non-dominated set of Radial Basis Functions Neural Networks were designed, benefiting from a Multi Objective Genetic Algorithm. The simulation results showed that the convex hull based method and the hybrid method involving convex hull and entropy, obtain better performance than the other methods, and that MOGA designed RBFNNs always perform better than the other models. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.FCT through IDMEC, under LAETA grant [UID/EMS/50022/2013]info:eu-repo/semantics/publishedVersio

    Non-intrusive load monitoring of household devices using a hybrid deep learning model through convex hull-based data selection

    Get PDF
    The availability of smart meters and IoT technology has opened new opportunities, ranging from monitoring electrical energy to extracting various types of information related to household occupancy, and with the frequency of usage of different appliances. Non-intrusive load monitoring (NILM) allows users to disaggregate the usage of each device in the house using the total aggregated power signals collected from a smart meter that is typically installed in the household. It enables the monitoring of domestic appliance use without the need to install individual sensors for each device, thus minimizing electrical system complexities and associated costs. This paper proposes an NILM framework based on low frequency power data using a convex hull data selection approach and hybrid deep learning architecture. It employs a sliding window of aggregated active and reactive powers sampled at 1 Hz. A randomized approximation convex hull data selection approach performs the selection of the most informative vertices of the real convex hull. The hybrid deep learning architecture is composed of two models: a classification model based on a convolutional neural network trained with a regression model based on a bidirectional long-term memory neural network. The results obtained on the test dataset demonstrate the effectiveness of the proposed approach, achieving F1 values ranging from 0.95 to 0.99 for the four devices considered and estimation accuracy values between 0.88 and 0.98. These results compare favorably with the performance of existing approaches.This research was funded by Programa Operacional Portugal 2020 and Operational Program CRESC Algarve 2020, grant numbers 39578/2018 and 72581/2020. Antonio Ruano also acknowledges the support of Fundação para a Ciência e Tecnologia, grant UID/EMS/50022/2020, through IDMEC under LAETAinfo:eu-repo/semantics/publishedVersio
    corecore