149 research outputs found

    Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits

    Get PDF
    Optimizing lower-body exoskeleton walking gaits for user comfort requires understanding users’ preferences over a high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due to computational limitations. To learn user preferences in high dimensions, this work presents LINECOSPAR, a human-in-the-loop preference-based framework that enables optimization over many parameters by iteratively exploring one-dimensional subspaces. Additionally, this work identifies gait attributes that characterize broader preferences across users. In simulations and human trials, we empirically verify that LINECOSPAR is a sample-efficient approach for high-dimensional preference optimization. Our analysis of the experimental data reveals a correspondence between human preferences and objective measures of dynamicity, while also highlighting differences in the utility functions underlying individual users’ gait preferences. This result has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation

    Preference-Based Learning for Exoskeleton Gait Optimization

    Get PDF
    This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton’s walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users

    Constructive Preference Elicitation over Hybrid Combinatorial Spaces

    Full text link
    Preference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.Comment: AAAI 2018, computing methodologies, machine learning, learning paradigms, supervised learning, structured output

    Preference-Based Learning for Exoskeleton Gait Optimization

    Get PDF
    This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton’s walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users

    Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits

    Get PDF
    Understanding users' gait preferences of a lower-body exoskeleton requires optimizing over the high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due to computational limitations. To learn user preferences in high dimensions, this work presents LineCoSpar, a human-in-the-loop preference-based framework that enables optimization over many parameters by iteratively exploring one-dimensional subspaces. Additionally, this work identifies gait attributes that characterize broader preferences across users. In simulations and human trials, we empirically verify that LineCoSpar is a sample-efficient approach for high-dimensional preference optimization. Our analysis of the experimental data reveals a correspondence between human preferences and objective measures of dynamic stability, while also highlighting inconsistencies in the utility functions underlying different users' gait preferences. This has implications for exoskeleton gait synthesis, an active field with applications to clinical use and patient rehabilitation

    Distinct Effects of Perceptual Quality on Auditory Word Recognition, Memory Formation and Recall in a Neural Model of Sequential Memory

    Get PDF
    Adults with sensory impairment, such as reduced hearing acuity, have impaired ability to recall identifiable words, even when their memory is otherwise normal. We hypothesize that poorer stimulus quality causes weaker activity in neurons responsive to the stimulus and more time to elapse between stimulus onset and identification. The weaker activity and increased delay to stimulus identification reduce the necessary strengthening of connections between neurons active before stimulus presentation and neurons active at the time of stimulus identification. We test our hypothesis through a biologically motivated computational model, which performs item recognition, memory formation and memory retrieval. In our simulations, spiking neurons are distributed into pools representing either items or context, in two separate, but connected winner-takes-all (WTA) networks. We include associative, Hebbian learning, by comparing multiple forms of spike-timing-dependent plasticity (STDP), which strengthen synapses between coactive neurons during stimulus identification. Synaptic strengthening by STDP can be sufficient to reactivate neurons during recall if their activity during a prior stimulus rose strongly and rapidly. We find that a single poor quality stimulus impairs recall of neighboring stimuli as well as the weak stimulus itself. We demonstrate that within the WTA paradigm of word recognition, reactivation of separate, connected sets of non-word, context cells permits reverse recall. Also, only with such coactive context cells, does slowing the rate of stimulus presentation increase recall probability. We conclude that significant temporal overlap of neural activity patterns, absent from individual WTA networks, is necessary to match behavioral data for word recall
    • …
    corecore