155 research outputs found

    Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting

    Get PDF
    We introduce the Kronecker factored online Laplace approximation for overcoming catastrophic forgetting in neural networks. The method is grounded in a Bayesian online learning framework, where we recursively approximate the posterior after every task with a Gaussian, leading to a quadratic penalty on changes to the weights. The Laplace approximation requires calculating the Hessian around a mode, which is typically intractable for modern architectures. In order to make our method scalable, we leverage recent block-diagonal Kronecker factored approximations to the curvature. Our algorithm achieves over 90% test accuracy across a sequence of 50 instantiations of the permuted MNIST dataset, substantially outperforming related methods for overcoming catastrophic forgetting.Comment: 13 pages, 6 figure

    Online Structured Laplace Approximations for Overcoming Catastrophic Forgetting

    Get PDF
    We introduce the Kronecker factored online Laplace approximation for overcoming catastrophic forgetting in neural networks. The method is grounded in a Bayesian online learning framework, where we recursively approximate the posterior after every task with a Gaussian, leading to a quadratic penalty on changes to the weights. The Laplace approximation requires calculating the Hessian around a mode, which is typically intractable for modern architectures. In order to make our method scalable, we leverage recent block-diagonal Kronecker factored approximations to the curvature. Our algorithm achieves over 90% test accuracy across a sequence of 50 instantiations of the permuted MNIST dataset, substantially outperforming related methods for overcoming catastrophic forgetting

    Scalable approximate inference methods for Bayesian deep learning

    Get PDF
    This thesis proposes multiple methods for approximate inference in deep Bayesian neural networks split across three parts. The first part develops a scalable Laplace approximation based on a block- diagonal Kronecker factored approximation of the Hessian. This approximation accounts for parameter correlations – overcoming the overly restrictive independence assumption of diagonal methods – while avoiding the quadratic scaling in the num- ber of parameters of the full Laplace approximation. The chapter further extends the method to online learning where datasets are observed one at a time. As the experiments demonstrate, modelling correlations between the parameters leads to improved performance over the diagonal approximation in uncertainty estimation and continual learning, in particular in the latter setting the improvements can be substantial. The second part explores two parameter-efficient approaches for variational inference in neural networks, one based on factorised binary distributions over the weights, one extending ideas from sparse Gaussian processes to neural network weight matrices. The former encounters similar underfitting issues as mean-field Gaussian approaches, which can be alleviated by a MAP-style method in a hierarchi- cal model. The latter, based on an extension of Matheron’s rule to matrix normal distributions, achieves comparable uncertainty estimation performance to ensembles with the accuracy of a deterministic network while using only 25% of the number of parameters of a single ResNet-50. The third part introduces TyXe, a probabilistic programming library built on top of Pyro to facilitate turning PyTorch neural networks into Bayesian ones. In contrast to existing frameworks, TyXe avoids introducing a layer abstraction, allowing it to support arbitrary architectures. This is demonstrated in a range of applications, from image classification with torchvision ResNets over node labelling with DGL graph neural networks to incorporating uncertainty into neural radiance fields with PyTorch3d
    • …
    corecore