1,360 research outputs found

    Online Stochastic Optimization under Correlated Bandit Feedback

    Get PDF
    In this paper we consider the problem of online stochastic optimization of a locally smooth function under bandit feedback. We introduce the high-confidence tree (HCT) algorithm, a novel any-time X\mathcal{X}-armed bandit algorithm, and derive regret bounds matching the performance of existing state-of-the-art in terms of dependency on number of steps and smoothness factor. The main advantage of HCT is that it handles the challenging case of correlated rewards, whereas existing methods require that the reward-generating process of each arm is an identically and independent distributed (iid) random process. HCT also improves on the state-of-the-art in terms of its memory requirement as well as requiring a weaker smoothness assumption on the mean-reward function in compare to the previous anytime algorithms. Finally, we discuss how HCT can be applied to the problem of policy search in reinforcement learning and we report preliminary empirical results

    Stochastic Online Shortest Path Routing: The Value of Feedback

    Full text link
    This paper studies online shortest path routing over multi-hop networks. Link costs or delays are time-varying and modeled by independent and identically distributed random processes, whose parameters are initially unknown. The parameters, and hence the optimal path, can only be estimated by routing packets through the network and observing the realized delays. Our aim is to find a routing policy that minimizes the regret (the cumulative difference of expected delay) between the path chosen by the policy and the unknown optimal path. We formulate the problem as a combinatorial bandit optimization problem and consider several scenarios that differ in where routing decisions are made and in the information available when making the decisions. For each scenario, we derive a tight asymptotic lower bound on the regret that has to be satisfied by any online routing policy. These bounds help us to understand the performance improvements we can expect when (i) taking routing decisions at each hop rather than at the source only, and (ii) observing per-link delays rather than end-to-end path delays. In particular, we show that (i) is of no use while (ii) can have a spectacular impact. Three algorithms, with a trade-off between computational complexity and performance, are proposed. The regret upper bounds of these algorithms improve over those of the existing algorithms, and they significantly outperform state-of-the-art algorithms in numerical experiments.Comment: 18 page

    Optimal No-regret Learning in Repeated First-price Auctions

    Full text link
    We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves O(Tlog2T)O(\sqrt{T}\log^2 T) regret bound when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an Ω(T2/3)\Omega(T^{2/3}) lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an O(Tlog3T)O(\sqrt{T}\log^3 T) regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem

    Counterfactual Learning from Bandit Feedback under Deterministic Logging: A Case Study in Statistical Machine Translation

    Full text link
    The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that risk-averse commercial SMT systems deterministically log the most probable translation. The lack of sufficient exploration of the SMT output space seemingly contradicts the theoretical requirements for counterfactual learning. We show that counterfactual learning from deterministic bandit logs is possible nevertheless by smoothing out deterministic components in learning. This can be achieved by additive and multiplicative control variates that avoid degenerate behavior in empirical risk minimization. Our simulation experiments show improvements of up to 2 BLEU points by counterfactual learning from deterministic bandit feedback.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017, Copenhagen, Denmar
    corecore