93,543 research outputs found

    Handwritten Signature Verification using Deep Learning

    Get PDF
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a large number of documents. To overcome the drawbacks of offline signature verification, we have seen a growth in online biometric personal verification such as fingerprints, eye scan etc. In this paper we created CNN model using python for offline signature and after training and validating, the accuracy of testing was 99.70%

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    Online and Offline Signature Verification: A Combined Approach

    Get PDF
    AbstractHandwritten signature verification is an emerging area. In this paper, an automatic signature verification system has been proposed. This work focuses on both online and offine features of handwritten signatures and aims at combining their results to verify the signature. Signatures are collected for both online and offine. Online data collected is the signing process captured using a webcam and offine data collected are the scanned signatures. Initially both data undergoes appropriate preprocessing steps. Then feature extraction is done where features based on pen tip tracking are used in case of online and gradient and projection based features are used in case of offine method. Later the online and offine method verifies the signature separately and finally their results are combined and the signature is verified using SVM. Paper also compares the results of online, offine and combined approach

    Signature Verification using Normalized Static Features and Neural Network Classification

    Get PDF
    Signature verification is very widely used in verification of the identity of any person. Now a days other biometric verification system has been evolved very widely like figure print, iris etc., but signature verification through computer system is still in development phase. The verification system is either through offline mode or online mode in online systems the dynamic information of a signature captured at the time the signature is made while in offline systems based on the scanned image of a signature. In this paper, a method is presented for Offline signatures Verification, for this verification system signature image is first pre-processed and converted into binary image of same size with 200x200 Pixels and then different features are extracted from the image like Eccentricity, Kurtosis, Skewness etc. and that features are used to train the neural network using back-propagation technique. For this verification system 6 different user signatures are taken to make database of the feature and results are analysed. The result demonstrate the efficiency of the proposed methodology when compared with other existing studies. The proposed algorithm gives False Acceptance Rate (FAR) as 5.05% and False Rejection rate (FRR) as 4.25%

    Time Independent Signature Verification using Normalized Weighted Coefficients

    Get PDF
    Signature verification is one of the most widely accepted verification methods in use. The application of handwritten signatures includes the banker’s checks, the credit and debit cards issued by banks and various legal documents. The time factor plays an important role in the framing of signature of an individual person. Signatures can be classified as: offline signature verification and online signature verification. In this paper a time independent signature verification using normalized weighted coefficients is presented. If the signature defining parameters are updated regularly according to the weighted coefficients, then the performance of the system can be increased to a significant level. Results show that by taking normalized weighted coefficients the performance parameters, FAR and FRR, can be improved significantly
    • …
    corecore