83 research outputs found

    Dynamic behavior analysis via structured rank minimization

    Get PDF
    Human behavior and affect is inherently a dynamic phenomenon involving temporal evolution of patterns manifested through a multiplicity of non-verbal behavioral cues including facial expressions, body postures and gestures, and vocal outbursts. A natural assumption for human behavior modeling is that a continuous-time characterization of behavior is the output of a linear time-invariant system when behavioral cues act as the input (e.g., continuous rather than discrete annotations of dimensional affect). Here we study the learning of such dynamical system under real-world conditions, namely in the presence of noisy behavioral cues descriptors and possibly unreliable annotations by employing structured rank minimization. To this end, a novel structured rank minimization method and its scalable variant are proposed. The generalizability of the proposed framework is demonstrated by conducting experiments on 3 distinct dynamic behavior analysis tasks, namely (i) conflict intensity prediction, (ii) prediction of valence and arousal, and (iii) tracklet matching. The attained results outperform those achieved by other state-of-the-art methods for these tasks and, hence, evidence the robustness and effectiveness of the proposed approach

    Low-Rank Tensor Completion Based on Self-Adaptive Learnable Transforms

    Get PDF
    The tensor nuclear norm (TNN), defined as the sum of nuclear norms of frontal slices of the tensor in a frequency domain, has been found useful in solving low-rank tensor recovery problems. Existing TNN-based methods use either fixed or data-independent transformations, which may not be the optimal choices for the given tensors. As the consequence, these methods cannot exploit the potential low-rank structure of tensor data adaptively. In this article, we propose a framework called self-adaptive learnable transform (SALT) to learn a transformation matrix from the given tensor. Specifically, SALT aims to learn a lossless transformation that induces a lower average-rank tensor, where the Schatten- p quasi-norm is used as the rank proxy. Then, because SALT is less sensitive to the orientation, we generalize SALT to other dimensions of tensor (SALTS), namely, learning three self-adaptive transformation matrices simultaneously from given tensor. SALTS is able to adaptively exploit the potential low-rank structures in all directions. We provide a unified optimization framework based on alternating direction multiplier method for SALTS model and theoretically prove the weak convergence property of the proposed algorithm. Experimental results in hyperspectral image (HSI), color video, magnetic resonance imaging (MRI), and COIL-20 datasets show that SALTS is much more accurate in tensor completion than existing methods. The demo code can be found at https://faculty.uestc.edu.cn/gaobin/zh_ CN/lwcg/153392/list/index.htm

    Robust Subspace Tracking Algorithms in Signal Processing: A Brief Survey

    Get PDF
    Principal component analysis (PCA) and subspace estimation (SE) are popular data analysis tools and used in a wide range of applications. The main interest in PCA/SE is for dimensionality reduction and low-rank approximation purposes. The emergence of big data streams have led to several essential issues for performing PCA/SE. Among them are (i) the size of such data streams increases over time, (ii) the underlying models may be time-dependent, and (iii) problem of dealing with the uncertainty and incompleteness in data. A robust variant of PCA/SE for such data streams, namely robust online PCA or robust subspace tracking (RST), has been introduced as a good alternative. The main goal of this paper is to provide a brief survey on recent RST algorithms in signal processing. Particularly, we begin this survey by introducing the basic ideas of the RST problem. Then, different aspects of RST are reviewed with respect to different kinds of non-Gaussian noises and sparse constraints. Our own contributions on this topic are also highlighted
    • …
    corecore