3,368 research outputs found

    Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna Systems with Hybrid Energy Supply

    Full text link
    The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of user's quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.Comment: IEEE Globecom 2014 Selected Areas in Communications Symposium-Green Communications and Computing Trac

    Energy-Efficient Optimization for Wireless Information and Power Transfer in Large-Scale MIMO Systems Employing Energy Beamforming

    Full text link
    In this letter, we consider a large-scale multiple-input multiple-output (MIMO) system where the receiver should harvest energy from the transmitter by wireless power transfer to support its wireless information transmission. The energy beamforming in the large-scale MIMO system is utilized to address the challenging problem of long-distance wireless power transfer. Furthermore, considering the limitation of the power in such a system, this letter focuses on the maximization of the energy efficiency of information transmission (bit per Joule) while satisfying the quality-of-service (QoS) requirement, i.e. delay constraint, by jointly optimizing transfer duration and transmit power. By solving the optimization problem, we derive an energy-efficient resource allocation scheme. Numerical results validate the effectiveness of the proposed scheme.Comment: 4 pages, 3 figures. IEEE Wireless Communications Letters 201

    Max-min Fair Wireless Energy Transfer for Secure Multiuser Communication Systems

    Full text link
    This paper considers max-min fairness for wireless energy transfer in a downlink multiuser communication system. Our resource allocation design maximizes the minimum harvested energy among multiple multiple-antenna energy harvesting receivers (potential eavesdroppers) while providing quality of service (QoS) for secure communication to multiple single-antenna information receivers. In particular, the algorithm design is formulated as a non-convex optimization problem which takes into account a minimum required signal-to-interference-plus-noise ratio (SINR) constraint at the information receivers and a constraint on the maximum tolerable channel capacity achieved by the energy harvesting receivers for a given transmit power budget. The proposed problem formulation exploits the dual use of artificial noise generation for facilitating efficient wireless energy transfer and secure communication. A semidefinite programming (SDP) relaxation approach is exploited to obtain a global optimal solution of the considered problem. Simulation results demonstrate the significant performance gain in harvested energy that is achieved by the proposed optimal scheme compared to two simple baseline schemes.Comment: 5 pages, invited paper, IEEE Information Theory Workshop 2014, Hobart, Tasmania, Australia, Nov. 201

    Max-min Fair Beamforming for SWIPT Systems with Non-linear EH Model

    Full text link
    We study the beamforming design for multiuser systems with simultaneous wireless information and power transfer (SWIPT). Employing a practical non-linear energy harvesting (EH) model, the design is formulated as a non-convex optimization problem for the maximization of the minimum harvested power across several energy harvesting receivers. The proposed problem formulation takes into account imperfect channel state information (CSI) and a minimum required signal-to-interference-plus-noise ratio (SINR). The globally optimal solution of the design problem is obtained via the semidefinite programming (SDP) relaxation approach. Interestingly, we can show that at most one dedicated energy beam is needed to achieve optimality. Numerical results demonstrate that with the proposed design a significant performance gain and improved fairness can be provided to the users compared to two baseline schemes.Comment: Invited paper, IEEE VTC 2017, Fall, Toronto, Canad
    • …
    corecore