9,047 research outputs found

    A deep learning-enhanced digital twin framework for improving safety and reliability in human-robot collaborative manufacturing

    Get PDF
    In Industry 5.0, Digital Twins bring in flexibility and efficiency for smart manufacturing. Recently, the success of artificial intelligence techniques such as deep learning has led to their adoption in manufacturing and especially in human–robot collaboration. Collaborative manufacturing tasks involving human operators and robots pose significant safety and reliability concerns. In response to these concerns, a deep learning-enhanced Digital Twin framework is introduced through which human operators and robots can be detected and their actions can be classified during the manufacturing process, enabling autonomous decision making by the robot control system. Developed using Unreal Engine 4, our Digital Twin framework complies with the Robotics Operating System specification, and supports synchronous control and communication between the Digital Twin and the physical system. In our framework, a fully-supervised detector based on a faster region-based convolutional neural network is firstly trained on synthetic data generated by the Digital Twin, and then tested on the physical system to demonstrate the effectiveness of the proposed Digital Twin-based framework. To ensure safety and reliability, a semi-supervised detector is further designed to bridge the gap between the twin system and the physical system, and improved performance is achieved by the semi-supervised detector compared to the fully-supervised detector that is simply trained on either synthetic data or real data. The evaluation of the framework in multiple scenarios in which human operators collaborate with a Universal Robot 10 shows that it can accurately detect the human and robot, and classify their actions under a variety of conditions. The data from this evaluation have been made publicly available, and can be widely used for research and operational purposes. Additionally, a semi-automated annotation tool from the Digital Twin framework is published to benefit the collaborative robotics community

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Taking Politics at Face Value: How Features Expose Ideology

    Get PDF
    Previous studies using computer vision neural networks to analyze facial images have uncovered patterns in the feature extracted output that are indicative of individual dispositions. For example, Wang and Kosinski (2018) were able to predict the sexual orientation of a target from his or her facial image with surprising accuracy, while Kosinski (2021) was able to do the same in regards to political orientation. These studies suggest that computer vision neural networks can be used to classify people into categories using only their facial images.However, there is some ambiguity in regards to the degree to which these features extracted from facial images incorporate facial morphology when used to make predictions. Critics have suggested that a subject’s transient facial features, such as using makeup, having a tan, donning a beard, or wearing glasses, might be subtly indicative of group belonging (Agüera y Arcas et al., 2018). Further, previous research in this domain has found that accurate image categorization can occur without utilizing facial morphology at all, instead relying upon image brightness, color dominance, or the background of the image to make successful classifications (Leuner, 2019; Wang, 2022). This dissertation seeks to bring some clarity to this domain. Using an application programming interface (API) for the popular social networking site Twitter, a sample of nearly a quarter million images of ideological organization followers was created. These images were followers of organizations supportive of, or oppositional to, the polarizing political issues of gun control and immigration. Through a series of strong comparisons, this research tests for the influence of facial morphology in image categorization. Facial images were converted into point and mesh coordinate representations of the subjects’ faces, thus eliminating the influence of transient facial features. Images were able to be classified using facial morphology alone at rates well above chance (64% accuracy across all models utilizing only facial points, 62% using facial mesh). These results provide the strongest evidence to date that images can be categorized into social categories by their facial morphology alone

    Detecting and Mitigating Adversarial Attack

    Get PDF
    Automating arrhythmia detection from ECG requires a robust and trusted system that retains high accuracy under electrical disturbances. Deep neural networks have become a popular technique for tracing ECG signals, outperforming human experts. Many approaches have reached human-level performance in classifying arrhythmia from ECGs. Even convolutional neural networks are susceptible to adversarial examples as well that can also misclassify ECG signals. Moreover, they do not generalize well on the out-of-distribution dataset. Adversarial attacks are small crafted perturbations injected in the original data which manifest the out-of-distribution shifts in signal to misclassify the correct class. However, these architectures are vulnerable to adversarial attacks as well. The GAN architecture has been employed in recent works to synthesize adversarial ECG signals to increase existing training data. However, they use a disjointed CNN-based classification architecture to detect arrhythmia. Till now, no versatile architecture has been proposed that can detect adversarial examples and classify arrhythmia simultaneously. In this work, we propose two novel conditional generative adversarial networks (GAN), ECG-Adv-GAN and ECG-ATK-GAN, to simultaneously generate ECG signals for different categories and detect cardiac abnormalities. The model is conditioned on class-specific ECG signals to synthesize realistic adversarial examples. Moreover, the ECG-ATK-GAN is robust against adversarial attacked ECG signals and retains high accuracy when exposed to various types of adversarial attacks while classifying arrhythmia. We benchmark our architecture on six different white and black-box attacks and compare them with other recently proposed arrhythmia classification models. When considering the defense strategy, the variation of the adversarial attacks, both targeted and non-targeted, can determine the perturbation by calculating the gradient. Novel defenses are being introduced to improve upon existing techniques to fend off each new attack. This back-and-forth game between attack and defense is persistently recurring, and it became significant to understand the pattern and behavior of the attacker to create a robust defense. One widespread tactic is applying a mathematically based model like Game theory. To analyze this circumstance, we propose a computational framework of game theory to analyze the CNN Classifier's vulnerability, strategy, and outcomes by forming a simultaneous two-player game. We represent the interaction in the Stackelberg Game in Kuhn tree to study players' possible behaviors and actions by applying our Classifier's actual predicted values in CAPTCHA dataset. Thus, we interpret potential attacks in deep learning applications while representing viable defense strategies from the Game theoretical perspective

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Low- and high-resource opinion summarization

    Get PDF
    Customer reviews play a vital role in the online purchasing decisions we make. The reviews express user opinions that are useful for setting realistic expectations and uncovering important details about products. However, some products receive hundreds or even thousands of reviews, making them time-consuming to read. Moreover, many reviews contain uninformative content, such as irrelevant personal experiences. Automatic summarization offers an alternative – short text summaries capturing the essential information expressed in reviews. Automatically produced summaries can reflect overall or particular opinions and be tailored to user preferences. Besides being presented on major e-commerce platforms, home assistants can also vocalize them. This approach can improve user satisfaction by assisting in making faster and better decisions. Modern summarization approaches are based on neural networks, often requiring thousands of annotated samples for training. However, human-written summaries for products are expensive to produce because annotators need to read many reviews. This has led to annotated data scarcity where only a few datasets are available. Data scarcity is the central theme of our works, and we propose a number of approaches to alleviate the problem. The thesis consists of two parts where we discuss low- and high-resource data settings. In the first part, we propose self-supervised learning methods applied to customer reviews and few-shot methods for learning from small annotated datasets. Customer reviews without summaries are available in large quantities, contain a breadth of in-domain specifics, and provide a powerful training signal. We show that reviews can be used for learning summarizers via a self-supervised objective. Further, we address two main challenges associated with learning from small annotated datasets. First, large models rapidly overfit on small datasets leading to poor generalization. Second, it is not possible to learn a wide range of in-domain specifics (e.g., product aspects and usage) from a handful of gold samples. This leads to subtle semantic mistakes in generated summaries, such as ‘great dead on arrival battery.’ We address the first challenge by explicitly modeling summary properties (e.g., content coverage and sentiment alignment). Furthermore, we leverage small modules – adapters – that are more robust to overfitting. As we show, despite their size, these modules can be used to store in-domain knowledge to reduce semantic mistakes. Lastly, we propose a simple method for learning personalized summarizers based on aspects, such as ‘price,’ ‘battery life,’ and ‘resolution.’ This task is harder to learn, and we present a few-shot method for training a query-based summarizer on small annotated datasets. In the second part, we focus on the high-resource setting and present a large dataset with summaries collected from various online resources. The dataset has more than 33,000 humanwritten summaries, where each is linked up to thousands of reviews. This, however, makes it challenging to apply an ‘expensive’ deep encoder due to memory and computational costs. To address this problem, we propose selecting small subsets of informative reviews. Only these subsets are encoded by the deep encoder and subsequently summarized. We show that the selector and summarizer can be trained end-to-end via amortized inference and policy gradient methods

    User Response in Ad Auctions: An MDP Formulation of Long-Term Revenue Optimization

    Full text link
    We propose a new Markov Decision Process (MDP) model for ad auctions to capture the user response to the quality of ads, with the objective of maximizing the long-term discounted revenue. By incorporating user response, our model takes into consideration all three parties involved in the auction (advertiser, auctioneer, and user). The state of the user is modeled as a user-specific click-through rate (CTR) with the CTR changing in the next round according to the set of ads shown to the user in the current round. We characterize the optimal mechanism for this MDP as a Myerson's auction with a notion of modified virtual value, which relies on the value distribution of the advertiser, the current user state, and the future impact of showing the ad to the user. Moreover, we propose a simple mechanism built upon second price auctions with personalized reserve prices and show it can achieve a constant-factor approximation to the optimal long term discounted revenue

    Essays on the Evolution of Prosocial Behaviors

    Get PDF
    Prosocial behaviors – such as helping others, donating, and cooperating – are often considered key to evolutionary suc- cess. Therefore, it is of great interest to understand under what conditions these behaviors can emerge and/or can be sustained at a population level. Following a dual process approach, I study whether and how cognition can affect the evolution of collaboration, cooperation, and generosity. I do this by employing stochastic stability analysis techniques and agent-based simulations. For each prosocial behavior consid-ered, I find that cognition can play an important role in the diffusion of prosocial behaviors, sometimes fostering them and other times hampering them. These results shed light on recent experimental evidence and, at the same time, suggest new interesting research avenues
    • …
    corecore