3 research outputs found

    Learning to Rank under Multinomial Logit Choice

    Get PDF
    Learning the optimal ordering of content is an important challenge in website design. The learning to rank (LTR) framework models this problem as a sequential problem of selecting lists of content and observing where users decide to click. Most previous work on LTR assumes that the user considers each item in the list in isolation, and makes binary choices to click or not on each. We introduce a multinomial logit (MNL) choice model to the LTR framework, which captures the behaviour of users who consider the ordered list of items as a whole and make a single choice among all the items and a no-click option. Under the MNL model, the user favours items which are either inherently more attractive, or placed in a preferable position within the list. We propose upper confidence bound algorithms to minimise regret in two settings - where the position dependent parameters are known, and unknown. We present theoretical analysis leading to an Ω(T)\Omega(\sqrt{T}) lower bound for the problem, an O~(T)\tilde{O}(\sqrt{T}) upper bound on regret for the known parameter version. Our analyses are based on tight new concentration results for Geometric random variables, and novel functional inequalities for maximum likelihood estimators computed on discrete data

    On Connections Between Machine Learning And Information Elicitation, Choice Modeling, And Theoretical Computer Science

    Get PDF
    Machine learning, which has its origins at the intersection of computer science and statistics, is now a rapidly growing area of research that is being integrated into almost every discipline in science and business such as economics, marketing and information retrieval. As a consequence of this integration, it is necessary to understand how machine learning interacts with these disciplines and to understand fundamental questions that arise at the resulting interfaces. The goal of my thesis research is to study these interdisciplinary questions at the interface of machine learning and other disciplines including mechanism design/information elicitation, preference/choice modeling, and theoretical computer science
    corecore