1,234 research outputs found

    Online Distributed Sensor Selection

    Full text link
    A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility function is not known a priori, must be learned from data, and can even change over time. Furthermore for large sensor networks solving a centralized optimization problem to select sensors is not feasible, and thus we seek a fully distributed solution. In this paper, we present Distributed Online Greedy (DOG), an efficient, distributed algorithm for repeatedly selecting sensors online, only receiving feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called submodularity. Our algorithm has extremely low communication requirements, and scales well to large sensor deployments. We extend DOG to allow observation-dependent sensor selection. We empirically demonstrate the effectiveness of our algorithm on several real-world sensing tasks

    Informational Substitutes

    Full text link
    We propose definitions of substitutes and complements for pieces of information ("signals") in the context of a decision or optimization problem, with game-theoretic and algorithmic applications. In a game-theoretic context, substitutes capture diminishing marginal value of information to a rational decision maker. We use the definitions to address the question of how and when information is aggregated in prediction markets. Substitutes characterize "best-possible" equilibria with immediate information aggregation, while complements characterize "worst-possible", delayed aggregation. Game-theoretic applications also include settings such as crowdsourcing contests and Q\&A forums. In an algorithmic context, where substitutes capture diminishing marginal improvement of information to an optimization problem, substitutes imply efficient approximation algorithms for a very general class of (adaptive) information acquisition problems. In tandem with these broad applications, we examine the structure and design of informational substitutes and complements. They have equivalent, intuitive definitions from disparate perspectives: submodularity, geometry, and information theory. We also consider the design of scoring rules or optimization problems so as to encourage substitutability or complementarity, with positive and negative results. Taken as a whole, the results give some evidence that, in parallel with substitutable items, informational substitutes play a natural conceptual and formal role in game theory and algorithms.Comment: Full version of FOCS 2016 paper. Single-column, 61 pages (48 main text, 13 references and appendix
    • …
    corecore