2,907 research outputs found

    Realtime Multilevel Crowd Tracking using Reciprocal Velocity Obstacles

    Full text link
    We present a novel, realtime algorithm to compute the trajectory of each pedestrian in moderately dense crowd scenes. Our formulation is based on an adaptive particle filtering scheme that uses a multi-agent motion model based on velocity-obstacles, and takes into account local interactions as well as physical and personal constraints of each pedestrian. Our method dynamically changes the number of particles allocated to each pedestrian based on different confidence metrics. Additionally, we use a new high-definition crowd video dataset, which is used to evaluate the performance of different pedestrian tracking algorithms. This dataset consists of videos of indoor and outdoor scenes, recorded at different locations with 30-80 pedestrians. We highlight the performance benefits of our algorithm over prior techniques using this dataset. In practice, our algorithm can compute trajectories of tens of pedestrians on a multi-core desktop CPU at interactive rates (27-30 frames per second). To the best of our knowledge, our approach is 4-5 times faster than prior methods, which provide similar accuracy

    Micro-Doppler Based Human-Robot Classification Using Ensemble and Deep Learning Approaches

    Full text link
    Radar sensors can be used for analyzing the induced frequency shifts due to micro-motions in both range and velocity dimensions identified as micro-Doppler (μ\boldsymbol{\mu}-D) and micro-Range (μ\boldsymbol{\mu}-R), respectively. Different moving targets will have unique μ\boldsymbol{\mu}-D and μ\boldsymbol{\mu}-R signatures that can be used for target classification. Such classification can be used in numerous fields, such as gait recognition, safety and surveillance. In this paper, a 25 GHz FMCW Single-Input Single-Output (SISO) radar is used in industrial safety for real-time human-robot identification. Due to the real-time constraint, joint Range-Doppler (R-D) maps are directly analyzed for our classification problem. Furthermore, a comparison between the conventional classical learning approaches with handcrafted extracted features, ensemble classifiers and deep learning approaches is presented. For ensemble classifiers, restructured range and velocity profiles are passed directly to ensemble trees, such as gradient boosting and random forest without feature extraction. Finally, a Deep Convolutional Neural Network (DCNN) is used and raw R-D images are directly fed into the constructed network. DCNN shows a superior performance of 99\% accuracy in identifying humans from robots on a single R-D map.Comment: 6 pages, accepted in IEEE Radar Conference 201

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework
    corecore