49,773 research outputs found

    Variance Reduced Online Gradient Descent for Kernelized Pairwise Learning with Limited Memory

    Full text link
    Pairwise learning is essential in machine learning, especially for problems involving loss functions defined on pairs of training examples. Online gradient descent (OGD) algorithms have been proposed to handle online pairwise learning, where data arrives sequentially. However, the pairwise nature of the problem makes scalability challenging, as the gradient computation for a new sample involves all past samples. Recent advancements in OGD algorithms have aimed to reduce the complexity of calculating online gradients, achieving complexities less than O(T)O(T) and even as low as O(1)O(1). However, these approaches are primarily limited to linear models and have induced variance. In this study, we propose a limited memory OGD algorithm that extends to kernel online pairwise learning while improving the sublinear regret. Specifically, we establish a clear connection between the variance of online gradients and the regret, and construct online gradients using the most recent stratified samples with a limited buffer of size of ss representing all past data, which have a complexity of O(sT)O(sT) and employs O(TlogT)O(\sqrt{T}\log{T}) random Fourier features for kernel approximation. Importantly, our theoretical results demonstrate that the variance-reduced online gradients lead to an improved sublinear regret bound. The experiments on real-world datasets demonstrate the superiority of our algorithm over both kernelized and linear online pairwise learning algorithms.Comment: Accepted in ACML202

    Dynamic Metric Learning from Pairwise Comparisons

    Full text link
    Recent work in distance metric learning has focused on learning transformations of data that best align with specified pairwise similarity and dissimilarity constraints, often supplied by a human observer. The learned transformations lead to improved retrieval, classification, and clustering algorithms due to the better adapted distance or similarity measures. Here, we address the problem of learning these transformations when the underlying constraint generation process is nonstationary. This nonstationarity can be due to changes in either the ground-truth clustering used to generate constraints or changes in the feature subspaces in which the class structure is apparent. We propose Online Convex Ensemble StrongLy Adaptive Dynamic Learning (OCELAD), a general adaptive, online approach for learning and tracking optimal metrics as they change over time that is highly robust to a variety of nonstationary behaviors in the changing metric. We apply the OCELAD framework to an ensemble of online learners. Specifically, we create a retro-initialized composite objective mirror descent (COMID) ensemble (RICE) consisting of a set of parallel COMID learners with different learning rates, demonstrate RICE-OCELAD on both real and synthetic data sets and show significant performance improvements relative to previously proposed batch and online distance metric learning algorithms.Comment: to appear Allerton 2016. arXiv admin note: substantial text overlap with arXiv:1603.0367

    Offline and Online Models for Learning Pairwise Relations in Data

    Get PDF
    Pairwise relations between data points are essential for numerous machine learning algorithms. Many representation learning methods consider pairwise relations to identify the latent features and patterns in the data. This thesis, investigates learning of pairwise relations from two different perspectives: offline learning and online learning.The first part of the thesis focuses on offline learning by starting with an investigation of the performance modeling of a synchronization method in concurrent programming using a Markov chain whose state transition matrix models pairwise relations between involved cores in a computer process.Then the thesis focuses on a particular pairwise distance measure, the minimax distance, and explores memory-efficient approaches to computing this distance by proposing a hierarchical representation of the data with a linear memory requirement with respect to the number of data points, from which the exact pairwise minimax distances can be derived in a memory-efficient manner. Then, a memory-efficient sampling method is proposed that follows the aforementioned hierarchical representation of the data and samples the data points in a way that the minimax distances between all data points are maximally preserved. Finally, the thesis proposes a practical non-parametric clustering of vehicle motion trajectories to annotate traffic scenarios based on transitive relations between trajectories in an embedded space.The second part of the thesis takes an online learning perspective, and starts by presenting an online learning method for identifying bottlenecks in a road network by extracting the minimax path, where bottlenecks are considered as road segments with the highest cost, e.g., in the sense of travel time. Inspired by real-world road networks, the thesis assumes a stochastic traffic environment in which the road-specific probability distribution of travel time is unknown. Therefore, it needs to learn the parameters of the probability distribution through observations by modeling the bottleneck identification task as a combinatorial semi-bandit problem. The proposed approach takes into account the prior knowledge and follows a Bayesian approach to update the parameters. Moreover, it develops a combinatorial variant of Thompson Sampling and derives an upper bound for the corresponding Bayesian regret. Furthermore, the thesis proposes an approximate algorithm to address the respective computational intractability issue.Finally, the thesis considers contextual information of road network segments by extending the proposed model to a contextual combinatorial semi-bandit framework and investigates and develops various algorithms for this contextual combinatorial setting

    Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion

    Full text link
    Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances. Such devices have limited processing and memory storage capabilities, whereas continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms have to be able to operate under such constraints while delivering good performance. This study presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important traits: 1) learning to learn, in a single pass, from streaming data with scarce examples and resources; 2) a self-organizing prototype-based architecture that expands as needed and clusters streaming data into separable groups by similarity and preserves data against catastrophic forgetting; 3) an interpretable architecture to convert the clusters into explainable IF-THEN rules as well as to justify model predictions in terms of what is similar and dissimilar to the inference; and 4) inferences at the global and local level using a pairwise decision fusion process to enhance the accuracy of the inference, hence ``Glocal Pairwise Fusion.'' We compare ExLL against contemporary online learning algorithms for image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate several continual learning scenarios for video streams, low-sample learning, ability to scale, and imbalanced data streams. The algorithms are evaluated for their performance in accuracy, number of parameters, and experiment runtime requirements. ExLL outperforms all algorithms for accuracy in the majority of the tested scenarios.Comment: 24 pages, 8 figure
    corecore