663 research outputs found

    Lifelong learning of concepts in CRAFT

    Full text link
    La planification à des niveaux d’abstraction plus élevés est essentielle lorsqu’il s’agit de résoudre des tâches à long horizon avec des complexités hiérarchiques. Pour planifier avec succès à un niveau d’abstraction donné, un agent doit comprendre le fonctionnement de l’environnement à ce niveau particulier. Cette compréhension peut être implicite en termes de politiques, de fonctions de valeur et de modèles, ou elle peut être définie explicitement. Dans ce travail, nous introduisons les concepts comme un moyen de représenter et d’accumuler explicitement des informations sur l’environnement. Les concepts sont définis en termes de transition d’état et des conditions requises pour que cette transition ait lieu. La simplicité de cette définition offre flexibilité et contrôle sur le processus d’apprentissage. Étant donné que les concepts sont de nature hautement interprétable, il est facile d’encoder les connaissances antérieures et d’intervenir au cours du processus d’apprentissage si nécessaire. Cette définition facilite également le transfert de concepts entre différents domaines. Les concepts, à un niveau d’abstraction donné, sont intimement liés aux compétences, ou actions temporellement abstraites. Toutes les transitions d’état suffisamment importantes pour être représentées par un concept se produisent après l’exécution réussie d’une compétence. En exploitant cette relation, nous introduisons un cadre qui facilite l’apprentissage tout au long de la vie et le raffinement des concepts à différents niveaux d’abstraction. Le cadre comporte trois volets: Le sytème 1 segmente un flux d’expérience (par exemple une démonstration) en une séquence de compétences. Cette segmentation peut se faire à différents niveaux d’abstraction. Le sytème 2 analyse ces segments pour affiner et mettre à niveau son ensemble de concepts, lorsqu’applicable. Le sytème 3 utilise les concepts disponibles pour générer un graphe de dépendance de sous-tâches. Ce graphe peut être utilisé pour planifier à différents niveaux d’abstraction. Nous démontrons l’applicabilité de ce cadre dans l’environnement hiérarchique 2D CRAFT. Nous effectuons des expériences pour explorer comment les concepts peuvent être appris de différents flux d’expérience et comment la qualité de la base de concepts affecte l’optimalité du plan général. Dans les tâches avec des dépendances de sous-tâches complexes, où la plupart des algorithmes ne parviennent pas à se généraliser ou prennent un temps impraticable à converger, nous démontrons que les concepts peuvent être utilisés pour simplifier considérablement la planification. Ce cadre peut également être utilisé pour comprendre l’intention d’une démonstration donnée en termes de concepts. Cela permet à l’agent de répliquer facilement la démonstration dans différents environnements. Nous montrons que cette méthode d’imitation est beaucoup plus robuste aux changements de configuration de l’environnement que les méthodes traditionnelles. Dans notre formulation du problème, nous faisons deux hypothèses: 1) que nous avons accès à un ensemble de compétences suffisamment exhaustif, et 2) que notre agent a accès à des environnements de pratique, qui peuvent être utilisés pour affiner les concepts en cas de besoin. L’objectif de ce travail est d’explorer l’aspect pratique des concepts d’apprentissage comme moyen d’améliorer la compréhension de l’environnement. Dans l’ensemble, nous démontrons que les concepts d’apprentissagePlanning at higher levels of abstraction is critical when it comes to solving long horizon tasks with hierarchical complexities. To plan successfully at a given level of abstraction, an agent must have an understanding of how the environment functions at that particular level. This understanding may be implicit in terms of policies, value functions, and world models, or it can be defined explicitly. In this work, we introduce concepts as a means to explicitly represent and accumulate information about the environment. Concepts are defined in terms of a state transition and the conditions required for that transition to take place. The simplicity of this definition offers flexibility and control over the learning process. Since concepts are highly interpretable in nature, it is easy to encode prior knowledge and intervene during the learning process if necessary. This definition also makes it relatively straightforward to transfer concepts across different domains wherever applicable. Concepts, at a given level of abstraction, are intricately linked to skills, or temporally abstracted actions. All the state transitions significant enough to be represented by a concept occur only after the successful execution of a skill. Exploiting this relationship, we introduce a framework that aids in lifelong learning and refining of concepts across different levels of abstraction. The framework has three components: - System 1 segments a stream of experience (e.g. a demonstration) into a sequence of skills. This segmentation can be done at different levels of abstraction. - System 2 analyses these segments to refine and upgrade its set of concepts, whenever applicable. - System 3 utilises the available concepts to generate a sub-task dependency graph. This graph can be used for planning at different levels of abstraction We demonstrate the applicability of this framework in the 2D hierarchical environment CRAFT. We perform experiments to explore how concepts can be learned from different streams of experience, and how the quality of the concept base affects the optimality of the overall plan. In tasks with complex sub-task dependencies, where most algorithms fail to generalise or take an impractical amount of time to converge, we demonstrate that concepts can be used to significantly simplify planning. This framework can also be used to understand the intention of a given demonstration in terms of concepts. This makes it easy for the agent to replicate a demonstration in different environments. We show that this method of imitation is much more robust to changes in the environment configurations than traditional methods. In our problem formulation, we make two assumptions: 1) that we have access to a sufficiently exhaustive set of skills, and 2) that our agent has access to practice environments, which can be used to refine concepts when needed. The objective behind this work is to explore the practicality of learning concepts as a means to improve one’s understanding about the environment. Overall, we demonstrate that learning concepts can be a light-weight yet efficient way to increase the capability of a system

    Sensorimotor representation learning for an "active self" in robots: A model survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in \sout{humans' world} \rev{spaces populated by people} and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyse what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration

    DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self

    Get PDF
    This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users

    An Embodied Perspective on Piano Timbre: Conceptualisation and Communication in Performance and Educational Context.

    Get PDF
    This thesis presents three empirical studies which explore the conceptualisation and communication of piano timbre from the perspective of the performer, the listener, and the pairing of teacher and student. The research started from the perspective of the debate between acousticians and musicians on touch-tone relationships, with the conviction that piano timbre should not be only concerned with the examination of sonic outcomes, but should aim to understand the phenomenology of experiences and conceptions related to piano timbre. Less is known about what contributes to the conceptualisation of piano timbre in terms of metaphor, cross-modal experience, mental images etc.; whether, and how, a timbral intention in piano performance can be communicated to others via sound and/or the body. By adopting an embodied perspective, this research has focused on an exploration of sound-gesture relationships in the perception and production of piano timbre, using a mix of qualitative and quantitative approaches. The first interview study indicated that expressive gestures and the introspective experience of performers affect the way they perceive and describe piano timbre. The second study examined the embodiment of piano timbre and demonstrated through a perceptual experiment that the visual component of piano performance influences the perceived timbral experience of listeners. The communication of piano timbre is multimodal and integrates aspects from visual, tactile, kinaesthetic and sonic dimensions. The third teaching observation study implied that shared understanding of piano timbre is an emergent and enactive product in a piano lesson through the real-time collaboration and participation of both the teacher and the student. The whole thesis contributes to the understanding of embodied music cognition and has implications for expressive piano performance and teaching practice

    Deep Learning in Mobile and Wireless Networking: A Survey

    Get PDF
    The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research

    One-shot domain-adaptive imitation learning via progressive learning applied to robotic pouring

    Get PDF
    Traditional deep learning-based visual imitation learning techniques require a large amount of demonstration data for model training, and the pre-trained models are difficult to adapt to new scenarios. To address these limitations, we propose a unified framework using a novel progressive learning approach comprised of three phases: i) a coarse learning phase for concept representation, ii) a fine learning phase for action generation, and iii) an imaginary learning phase for domain adaptation. Overall, this approach leads to a one-shot domain-adaptive imitation learning framework. We use robotic pouring as an example task to evaluate its effectiveness. Our results show that the method has several advantages over contemporary end-to-end imitation learning approaches, including an improved success rate for task execution and more efficient training for deep imitation learning. In addition, the generalizability to new domains is improved, as demonstrated here with novel backgrounds, target containers, and granule combinations in the experiment. We believe that the proposed method is broadly applicable to various industrial or domestic applications that involve deep imitation learning for robotic manipulation, and where the target scenarios are diverse and human demonstration data is limited. For project video, please check our website:. Note to Practitioners —The motivation of this paper is to develop a progressive learning framework, which can be used for both service and industrial robots to learn from human demonstrations, and then transfer the learned skill to different scenarios with ease. We use the robotic pouring task as an example to demonstrate the effectiveness of our proposed method, since pouring is an essential skill for service robots to assist humans’ daily lives, and can benefit robot automation in wet-lab industries. The aim of this research is to enable robots to obtain visuomotor skills (such as the pouring skill), and accomplish the tasks with a high success rate using our proposed progressive learning method. We conducted experiments to show that the proposed method has good performance, high data efficiency and evident generalizability. This is significant for intelligent robots working in various practical applications
    • …
    corecore