3,224 research outputs found

    Staple: Complementary Learners for Real-Time Tracking

    Full text link
    Correlation Filter-based trackers have recently achieved excellent performance, showing great robustness to challenging situations exhibiting motion blur and illumination changes. However, since the model that they learn depends strongly on the spatial layout of the tracked object, they are notoriously sensitive to deformation. Models based on colour statistics have complementary traits: they cope well with variation in shape, but suffer when illumination is not consistent throughout a sequence. Moreover, colour distributions alone can be insufficiently discriminative. In this paper, we show that a simple tracker combining complementary cues in a ridge regression framework can operate faster than 80 FPS and outperform not only all entries in the popular VOT14 competition, but also recent and far more sophisticated trackers according to multiple benchmarks.Comment: To appear in CVPR 201

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Visual tracking with online assessment and improved sampling strategy

    Get PDF
    The kernelized correlation filter (KCF) is one of the most successful trackers in computer vision today. However its performance may be significantly degraded in a wide range of challenging conditions such as occlusion and out of view. For many applications, particularly safety critical applications (e.g. autonomous driving), it is of profound importance to have consistent and reliable performance during all the operation conditions. This paper addresses this issue of the KCF based trackers by the introduction of two novel modules, namely online assessment of response map, and a strategy of combining cyclically shifted sampling with random sampling in deep feature space. A method of online assessment of response map is proposed to evaluate the tracking performance by constructing a 2-D Gaussian estimation model. Then a strategy of combining cyclically shifted sampling with random sampling in deep feature space is presented to improve the tracking performance when the tracking performance is assessed to be unreliable based on the response map. Therefore, the module of online assessment can be regarded as the trigger for the second module. Experiments verify the tracking performance is significantly improved particularly in challenging conditions as demonstrated by both quantitative and qualitative comparisons of the proposed tracking algorithm with the state-of-the-art tracking algorithms on OTB-2013 and OTB-2015 datasets
    • …
    corecore