59,598 research outputs found

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads

    Similarity Learning for High-Dimensional Sparse Data

    Get PDF
    A good measure of similarity between data points is crucial to many tasks in machine learning. Similarity and metric learning methods learn such measures automatically from data, but they do not scale well respect to the dimensionality of the data. In this paper, we propose a method that can learn efficiently similarity measure from high-dimensional sparse data. The core idea is to parameterize the similarity measure as a convex combination of rank-one matrices with specific sparsity structures. The parameters are then optimized with an approximate Frank-Wolfe procedure to maximally satisfy relative similarity constraints on the training data. Our algorithm greedily incorporates one pair of features at a time into the similarity measure, providing an efficient way to control the number of active features and thus reduce overfitting. It enjoys very appealing convergence guarantees and its time and memory complexity depends on the sparsity of the data instead of the dimension of the feature space. Our experiments on real-world high-dimensional datasets demonstrate its potential for classification, dimensionality reduction and data exploration.Comment: 14 pages. Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS 2015). Matlab code: https://github.com/bellet/HDS

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space
    • …
    corecore