185 research outputs found

    Online learning via dynamic reranking for Computer Assisted Translation

    Full text link
    New techniques for online adaptation in computer assisted translation are explored and compared to previously existing approaches. Under the online adaptation paradigm, the translation system needs to adapt itself to real-world changing scenarios, where training and tuning may only take place once, when the system is set-up for the first time. For this purpose, post-edit information, as described by a given quality measure, is used as valuable feedback within a dynamic reranking algorithm. Two possible approaches are presented and evaluated. The first one relies on the well-known perceptron algorithm, whereas the second one is a novel approach using the Ridge regression in order to compute the optimum scaling factors within a state-of-the-art SMT system. Experimental results show that such algorithms are able to improve translation quality by learning from the errors produced by the system on a sentence-by-sentence basis.This paper is based upon work supported by the EC (FEDER/FSE) and the Spanish MICINN under projects MIPRCV “Consolider Ingenio 2010” (CSD2007-00018) and iTrans2 (TIN2009-14511). Also supported by the Spanish MITyC under the erudito.com (TSI-020110-2009-439) project, by the Generalitat Valenciana under grant Prometeo/2009/014 and scholarship GV/2010/067 and by the UPV under grant 20091027Martínez Gómez, P.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2011). Online learning via dynamic reranking for Computer Assisted Translation. En Computational Linguistics and Intelligent Text Processing. Springer Verlag (Germany). 6609:93-105. https://doi.org/10.1007/978-3-642-19437-5_8S931056609Brown, P., Pietra, S.D., Pietra, V.D., Mercer, R.: The mathematics of machine translation. In: Computational Linguistics, vol. 19, pp. 263–311 (1993)Zens, R., Och, F.J., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002)Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proc. HLT/NAACL 2003, pp. 48–54 (2003)Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J.: (meta-) evaluation of machine translation. In: Proc. of the Workshop on SMT. ACL, pp. 136–158 (2007)Papineni, K., Roukos, S., Ward, T.: Maximum likelihood and discriminative training of direct translation models. In: Proc. of ICASSP 1988, pp. 189–192 (1998)Och, F., Ney, H.: Discriminative training and maximum entropy models for statistical machine translation. In: Proc. of the ACL 2002, pp. 295–302 (2002)Och, F., Zens, R., Ney, H.: Efficient search for interactive statistical machine translation. In: Proc. of EACL 2003, pp. 387–393 (2003)Sanchis-Trilles, G., Casacuberta, F.: Log-linear weight optimisation via bayesian adaptation in statistical machine translation. In: Proceedings of COLING 2010, Beijing, China (2010)Callison-Burch, C., Bannard, C., Schroeder, J.: Improving statistical translation through editing. In: Proc. of 9th EAMT Workshop Broadening Horizons of Machine Translation and its Applications, Malta (2004)Barrachina, S., et al.: Statistical approaches to computer-assisted translation. Computational Linguistics 35, 3–28 (2009)Casacuberta, F., et al.: Human interaction for high quality machine translation. Communications of the ACM 52, 135–138 (2009)Ortiz-Martínez, D., García-Varea, I., Casacuberta, F.: Online learning for interactive statistical machine translation. In: Proceedings of NAACL HLT, Los Angeles (2010)España-Bonet, C., Màrquez, L.: Robust estimation of feature weights in statistical machine translation. In: 14th Annual Conference of the EAMT (2010)Reverberi, G., Szedmak, S., Cesa-Bianchi, N., et al.: Deliverable of package 4: Online learning algorithms for computer-assisted translation (2008)Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proc. of AMTA, Cambridge, MA, USA (2006)Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: A method for automatic evaluation of machine translation. In: Proc. of ACL 2002 (2002)Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958)Collins, M.: Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In: EMNLP 2002, Philadelphia, PA, USA, pp. 1–8 (2002)Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Proc. of the MT Summit X, pp. 79–86 (2005)Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proc. of the ACL Demo and Poster Sessions, Prague, Czech Republic, pp. 177–180 (2007)Och, F.: Minimum error rate training for statistical machine translation. In: Proc. of ACL 2003, pp. 160–167 (2003)Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing II, pp. 181–184 (1995)Stolcke, A.: SRILM – an extensible language modeling toolkit. In: Proc. of ICSLP 2002, pp. 901–904 (2002

    brat: a Web-based Tool for NLP-Assisted Text Annotation

    Get PDF
    We introduce the brat rapid annotation tool (BRAT), an intuitive web-based tool for text annotation supported by Natural Language Processing (NLP) technology. BRAT has been developed for rich structured annotation for a variety of NLP tasks and aims to support manual curation efforts and increase annotator productivity using NLP techniques. We discuss several case studies of real-world annotation projects using pre-release versions of BRAT and present an evaluation of annotation assisted by semantic class disambiguation on a multicategory entity mention annotation task, showing a 15 % decrease in total annotation time. BRAT is available under an opensource license from

    Human Feedback in Statistical Machine Translation

    Get PDF
    The thesis addresses the challenge of improving Statistical Machine Translation (SMT) systems via feedback given by humans on translation quality. The amount of human feedback available to systems is inherently low due to cost and time limitations. One of our goals is to simulate such information by automatically generating pseudo-human feedback. This is performed using Quality Estimation (QE) models. QE is a technique for predicting the quality of automatic translations without comparing them to oracle (human) translations, traditionally at the sentence or word levels. QE models are trained on a small collection of automatic translations manually labelled for quality, and then can predict the quality of any number of unseen translations. We propose a number of improvements for QE models in order to increase the reliability of pseudo-human feedback. These include strategies to artificially generate instances for settings where QE training data is scarce. We also introduce a new level of granularity for QE: the level of phrases. This level aims to improve the quality of QE predictions by better modelling inter-dependencies among errors at word level, and in ways that are tailored to phrase-based SMT, where the basic unit of translation is a phrase. This can thus facilitate work on incorporating human feedback during the translation process. Finally, we introduce approaches to incorporate pseudo-human feedback in the form of QE predictions in SMT systems. More specifically, we use quality predictions to select the best translation from a number of alternative suggestions produced by SMT systems, and integrate QE predictions into an SMT system decoder in order to guide the translation generation process

    Preference Learning for Machine Translation

    Get PDF
    Automatic translation of natural language is still (as of 2017) a long-standing but unmet promise. While advancing at a fast rate, the underlying methods are still far from actually being able to reliably capture syntax or semantics of arbitrary utterances of natural language, way off transporting the encoded meaning into a second language. However, it is possible to build useful translating machines when the target domain is well known and the machine is able to learn and adapt efficiently and promptly from new inputs. This is possible thanks to efficient and effective machine learning methods which can be applied to automatic translation. In this work we present and evaluate methods for three distinct scenarios: a) We develop algorithms that can learn from very large amounts of data by exploiting pairwise preferences defined over competing translations, which can be used to make a machine translation system robust to arbitrary texts from varied sources, but also enable it to learn effectively to adapt to new domains of data; b) We describe a method that is able to efficiently learn external models which adhere to fine-grained preferences that are extracted from a constricted selection of translated material, e.g. for adapting to users or groups of users in a computer-aided translation scenario; c) We develop methods for two machine translation paradigms, neural- and traditional statistical machine translation, to directly adapt to user-defined preferences in an interactive post-editing scenario, learning precisely adapted machine translation systems. In all of these settings, we show that machine translation can be made significantly more useful by careful optimization via preference learning

    The integration of machine translation and translation memory

    Get PDF
    We design and evaluate several models for integrating Machine Translation (MT) output into a Translation Memory (TM) environment to facilitate the adoption of MT technology in the localization industry. We begin with the integration on the segment level via translation recommendation and translation reranking. Given an input to be translated, our translation recommendation model compares the output from the MT and the TMsystems, and presents the better one to the post-editor. Our translation reranking model combines k-best lists from both systems, and generates a new list according to estimated post-editing effort. We perform both automatic and human evaluation on these models. When measured against the consensus of human judgement, the recommendation model obtains 0.91 precision at 0.93 recall, and the reranking model obtains 0.86 precision at 0.59 recall. The high precision of these models indicates that they can be integrated into TM environments without the risk of deteriorating the quality of the post-editing candidate, and can thereby preserve TM assets and established cost estimation methods associated with TMs. We then explore methods for a deeper integration of translation memory and machine translation on the sub-segment level. We predict whether phrase pairs derived from fuzzy matches could be used to constrain the translation of an input segment. Using a series of novel linguistically-motivated features, our constraints lead both to more consistent translation output, and to improved translation quality, reflected by a 1.2 improvement in BLEU score and a 0.72 reduction in TER score, both of statistical significance (p < 0.01). In sum, we present our work in three aspects: 1) translation recommendation and translation reranking models that can access high quality MT outputs in the TMenvironment, 2) a sub-segment translation memory and machine translation integration model that improves both translation consistency and translation quality, and 3) a human evaluation pipeline to validate the effectiveness of our models with human judgements

    A multilingual neural coaching model with enhanced long-term dialogue structure

    Get PDF
    In this work we develop a fully data-driven conversational agent capable of carrying out motivational coach- ing sessions in Spanish, French, Norwegian, and English. Unlike the majority of coaching, and in general well-being related conversational agents that can be found in the literature, ours is not designed by hand- crafted rules. Instead, we directly model the coaching strategy of professionals with end users. To this end, we gather a set of virtual coaching sessions through a Wizard of Oz platform, and apply state of the art Natural Language Processing techniques. We employ a transfer learning approach, pretraining GPT2 neural language models and fine-tuning them on our corpus. However, since these only take as input a local dialogue history, a simple fine-tuning procedure is not capable of modeling the long-term dialogue strategies that appear in coaching sessions. To alleviate this issue, we first propose to learn dialogue phase and scenario embeddings in the fine-tuning stage. These indicate to the model at which part of the dialogue it is and which kind of coaching session it is carrying out. Second, we develop a global deep learning system which controls the long-term structure of the dialogue. We also show that this global module can be used to visualize and interpret the decisions taken by the the conversational agent, and that the learnt representations are comparable to dialogue acts. Automatic and human evaluation show that our proposals serve to improve the baseline models. Finally, interaction experiments with coaching experts indicate that the system is usable and gives rise to positive emotions in Spanish, French and English, while the results in Norwegian point out that there is still work to be done in fully data driven approaches with very low resource languages.This work has been partially funded by the Basque Government under grant PRE_2017_1_0357 and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 769872

    Passive-aggressive for on-line learning in statistical machine translation

    Full text link
    New variations on the application of the passive-aggressive algorithm to statistical machine translation are developed and compared to previously existing approaches. In online adaptation, the system needs to adapt to real-world changing scenarios, where training and tuning only take place when the system is set-up for the first time. Post-edit information, as described by a given quality measure, is used as valuable feedback within the passive-aggressive framework, adapting the statistical models on-line. First, by modifying the translation model parameters, and alternatively, by adapting the scaling factors present in stateof- the-art SMT systems. Experimental results show improvements in translation quality by allowing the system to learn on a sentence-by-sentence basis.This paper is based upon work supported by the EC (FEDER/FSE) and the Spanish MICINN under projects MIPRCV “Consolider Ingenio 2010” (CSD2007-00018) and iTrans2 (TIN2009-14511). Also supported by the Spanish MITyC under the erudito.com (TSI-020110-2009-439) project, by the Generalitat Valenciana under grant Prometeo/2009/014 and scholarship GV/2010/067 and by the UPV under grant 20091027.Martínez Gómez, P.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2011). Passive-aggressive for on-line learning in statistical machine translation. En Pattern Recognition and Image Analysis. Springer Verlag (Germany). 6669:240-247. https://doi.org/10.1007/978-3-642-21257-4_30S2402476669Barrachina, S., et al.: Statistical approaches to computer-assisted translation. Computational Linguistics 35(1), 3–28 (2009)Callison-Burch, C., Bannard, C., Schroeder, J.: Improving statistical translation through editing. In: Proc. of 9th EAMT Workshop Broadening Horizons of Machine Translation and its Applications, Malta (April 2004)Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., Schroeder, J.: (meta-) evaluation of machine translation. In: Proc. of the Workshop on SMT, pp. 136–158. ACL (June 2007)Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585 (2006)Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing II, pp. 181–184 (May 1995)Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Proc. of the MT Summit X, pp. 79–86 (2005)Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proc. of the ACL Demo and Poster Sessions, Prague, Czech Republic, pp. 177–180 (2007)Och, F., Ney, H.: Discriminative training and maximum entropy models for statistical machine translation. In: Proc. of the ACL 2002, pp. 295–302 (2002)Och, F.: Minimum error rate training for statistical machine translation. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 160–167. Springer, Heidelberg (2004)Ortiz-Martínez, D., García-Varea, I., Casacuberta, F.: Online learning for interactive statistical machine translation. In: Proceedings of NAACL HLT, Los Angeles (June 2010)Papineni, K., Roukos, S., Ward, T.: Maximum likelihood and discriminative training of direct translation models. In: Proc. of ICASSP 1998, pp. 189–192 (1998)Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: A method for automatic evaluation of machine translation. In: Proc. of ACL 2002, pp. 311–318 (2002)Reverberi, G., Szedmak, S., Cesa-Bianchi, N., et al.: Deliverable of package 4: Online learning algorithms for computer-assisted translation (2008)Sanchis-Trilles, G., Casacuberta, F.: Log-linear weight optimisation via bayesian adaptation in statistical machine translation. In: Proc. of COLING 2010, Beijing, China, pp. 1077–1085 (August 2010)Snover, M., et al.: A study of translation edit rate with targeted human annotation. In: Proc. of AMTA 2006, Cambridge, Massachusetts, USA, pp. 223–231 (August 2006)Zens, R., Och, F., Ney, H.: Phrase-based statistical machine translation. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 18–32. Springer, Heidelberg (2002

    Large Language Models for Information Retrieval: A Survey

    Full text link
    As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field
    • …
    corecore