1,868 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Bridging formal methods and machine learning with model checking and global optimisation

    Get PDF
    Formal methods and machine learning are two research fields with drastically different foundations and philosophies. Formal methods utilise mathematically rigorous techniques for software and hardware systems' specification, development and verification. Machine learning focuses on pragmatic approaches to gradually improve a parameterised model by observing a training data set. While historically, the two fields lack communication, this trend has changed in the past few years with an outburst of research interest in the robustness verification of neural networks. This paper will briefly review these works, and focus on the urgent need for broader and more in-depth communication between the two fields, with the ultimate goal of developing learning-enabled systems with excellent performance and acceptable safety and security. We present a specification language, MLS2, and show that it can express a set of known safety and security properties, including generalisation, uncertainty, robustness, data poisoning, backdoor, model stealing, membership inference, model inversion, interpretability, and fairness. To verify MLS2 properties, we promote the global optimisation-based methods, which have provable guarantees on the convergence to the optimal solution. Many of them have theoretical bounds on the gap between current solutions and the optimal solution

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Rules, frequency, and predictability in morphological generalization: behavioral and computational evidence from the German plural system

    Get PDF
    Morphological generalization, or the task of mapping an unknown word (such as a novel noun Raun) to an inflected form (such as the plural Rauns), has historically proven a contested topic within computational linguistics and cognitive science, e.g. within the past tense debate (Rumelhart and McClelland, 1986; Pinker and Prince, 1988; Seidenberg and Plaut, 2014). Marcus et al. (1995) identified German plural inflection as a key challenge domain to evaluate two competing accounts of morphological generalization: a rule generation view focused on linguistic features of input words, and a type frequency view focused on the distribution of output inflected forms, thought to reflect more domain-general cognitive processes. More recent behavioral and computational research developments support a new view based on predictability, which integrates both input and output distributions. My research uses these methodological innovations to revisit a core dispute of the past tense debate: how do German speakers generalize plural inflection, and can computational learners generalize similarly? This dissertation evaluates the rule generation, type frequency, and predictability accounts of morphological generalization in a series of behavioral and computational experiments with the stimuli developed by Marcus et al.. I assess predictions for three aspects of German plural generalization: distribution of infrequent plural classes, influence of grammatical gender, and within-item variability. Overall, I find that speaker behavior is best characterized as frequency-matching to a phonologically-conditioned lexical distribution. This result does not support the rule generation view, and qualifies the predictability view: speakers use some, but not all available information to reduce uncertainty in morphological generalization. Neural and symbolic model predictions are typically overconfident relative to speakers; simple Bayesian models show somewhat higher speaker-like variability and accuracy. All computational models are outperformed by a static phonologically-conditioned lexical baseline, suggesting these models have not learned the selective feature preferences that inform speaker generalization

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances
    • …
    corecore