133,804 research outputs found

    Online Learning of Noisy Data with Kernels

    Full text link
    We study online learning when individual instances are corrupted by adversarially chosen random noise. We assume the noise distribution is unknown, and may change over time with no restriction other than having zero mean and bounded variance. Our technique relies on a family of unbiased estimators for non-linear functions, which may be of independent interest. We show that a variant of online gradient descent can learn functions in any dot-product (e.g., polynomial) or Gaussian kernel space with any analytic convex loss function. Our variant uses randomized estimates that need to query a random number of noisy copies of each instance, where with high probability this number is upper bounded by a constant. Allowing such multiple queries cannot be avoided: Indeed, we show that online learning is in general impossible when only one noisy copy of each instance can be accessed.Comment: This is a full version of the paper appearing in the 23rd International Conference on Learning Theory (COLT 2010

    Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes

    Get PDF
    Successful biological systems adapt to change. In this paper, we are principally concerned with adaptive systems that operate in environments where data arrives sequentially and is multivariate in nature, for example, sensory streams in robotic systems. We contribute two reservoir inspired methods: 1) the online echostate Gaussian process (OESGP) and 2) its infinite variant, the online infinite echostate Gaussian process (OIESGP) Both algorithms are iterative fixed-budget methods that learn from noisy time series. In particular, the OESGP combines the echo-state network with Bayesian online learning for Gaussian processes. Extending this to infinite reservoirs yields the OIESGP, which uses a novel recursive kernel with automatic relevance determination that enables spatial and temporal feature weighting. When fused with stochastic natural gradient descent, the kernel hyperparameters are iteratively adapted to better model the target system. Furthermore, insights into the underlying system can be gleamed from inspection of the resulting hyperparameters. Experiments on noisy benchmark problems (one-step prediction and system identification) demonstrate that our methods yield high accuracies relative to state-of-the-art methods, and standard kernels with sliding windows, particularly on problems with irrelevant dimensions. In addition, we describe two case studies in robotic learning-by-demonstration involving the Nao humanoid robot and the Assistive Robot Transport for Youngsters (ARTY) smart wheelchair

    Online Real-time Learning of Dynamical Systems from Noisy Streaming Data

    Full text link
    Recent advancements in sensing and communication facilitate obtaining high-frequency real-time data from various physical systems like power networks, climate systems, biological networks, etc. However, since the data are recorded by physical sensors, it is natural that the obtained data is corrupted by measurement noise. In this paper, we present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data, which employs the Robust Koopman operator framework to mitigate the effect of measurement noise. The proposed algorithm has three main advantages: a) it allows for online real-time monitoring of a dynamical system; b) it obtains a linear representation of the underlying dynamical system, thus enabling the user to use linear systems theory for analysis and control of the system; c) it is computationally fast and less intensive than the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the proposed algorithm by applying it to identify the Van der Pol oscillator, the IEEE 68 bus system, and a ring network of Van der Pol oscillators

    Empirical Gaussian priors for cross-lingual transfer learning

    Full text link
    Sequence model learning algorithms typically maximize log-likelihood minus the norm of the model (or minimize Hamming loss + norm). In cross-lingual part-of-speech (POS) tagging, our target language training data consists of sequences of sentences with word-by-word labels projected from translations in kk languages for which we have labeled data, via word alignments. Our training data is therefore very noisy, and if Rademacher complexity is high, learning algorithms are prone to overfit. Norm-based regularization assumes a constant width and zero mean prior. We instead propose to use the kk source language models to estimate the parameters of a Gaussian prior for learning new POS taggers. This leads to significantly better performance in multi-source transfer set-ups. We also present a drop-out version that injects (empirical) Gaussian noise during online learning. Finally, we note that using empirical Gaussian priors leads to much lower Rademacher complexity, and is superior to optimally weighted model interpolation.Comment: Presented at NIPS 2015 Workshop on Transfer and Multi-Task Learnin
    • …
    corecore