1,302 research outputs found

    Learning Conditional Preference Networks from Optimal Choices

    Get PDF
    Conditional preference networks (CP-nets) model user preferences over objects described in terms of values assigned to discrete features, where the preference for one feature may depend on the values of other features. Most existing algorithms for learning CP-nets from the user\u27s choices assume that the user chooses between pairs of objects. However, many real-world applications involve the the user choosing from all combinatorial possibilities or a very large subset. We introduce a CP-net learning algorithm for the latter type of choice, and study its properties formally and empirically

    CP-nets: From Theory to Practice

    Get PDF
    Conditional preference networks (CP-nets) exploit the power of ceteris paribus rules to represent preferences over combinatorial decision domains compactly. CP-nets have much appeal. However, their study has not yet advanced sufficiently for their widespread use in real-world applications. Known algorithms for deciding dominance---whether one outcome is better than another with respect to a CP-net---require exponential time. Data for CP-nets are difficult to obtain: human subjects data over combinatorial domains are not readily available, and earlier work on random generation is also problematic. Also, much of the research on CP-nets makes strong, often unrealistic assumptions, such as that decision variables must be binary or that only strict preferences are permitted. In this thesis, I address such limitations to make CP-nets more useful. I show how: to generate CP-nets uniformly randomly; to limit search depth in dominance testing given expectations about sets of CP-nets; and to use local search for learning restricted classes of CP-nets from choice data

    Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

    Full text link
    We propose an efficient family of algorithms to learn the parameters of a Bayesian network from incomplete data. In contrast to textbook approaches such as EM and the gradient method, our approach is non-iterative, yields closed form parameter estimates, and eliminates the need for inference in a Bayesian network. Our approach provides consistent parameter estimates for missing data problems that are MCAR, MAR, and in some cases, MNAR. Empirically, our approach is orders of magnitude faster than EM (as our approach requires no inference). Given sufficient data, we learn parameters that can be orders of magnitude more accurate

    Dynamics of Information Diffusion and Social Sensing

    Full text link
    Statistical inference using social sensors is an area that has witnessed remarkable progress and is relevant in applications including localizing events for targeted advertising, marketing, localization of natural disasters and predicting sentiment of investors in financial markets. This chapter presents a tutorial description of four important aspects of sensing-based information diffusion in social networks from a communications/signal processing perspective. First, diffusion models for information exchange in large scale social networks together with social sensing via social media networks such as Twitter is considered. Second, Bayesian social learning models and risk averse social learning is considered with applications in finance and online reputation systems. Third, the principle of revealed preferences arising in micro-economics theory is used to parse datasets to determine if social sensors are utility maximizers and then determine their utility functions. Finally, the interaction of social sensors with YouTube channel owners is studied using time series analysis methods. All four topics are explained in the context of actual experimental datasets from health networks, social media and psychological experiments. Also, algorithms are given that exploit the above models to infer underlying events based on social sensing. The overview, insights, models and algorithms presented in this chapter stem from recent developments in network science, economics and signal processing. At a deeper level, this chapter considers mean field dynamics of networks, risk averse Bayesian social learning filtering and quickest change detection, data incest in decision making over a directed acyclic graph of social sensors, inverse optimization problems for utility function estimation (revealed preferences) and statistical modeling of interacting social sensors in YouTube social networks.Comment: arXiv admin note: text overlap with arXiv:1405.112
    corecore