171 research outputs found

    Efficient Online Processing with Deep Neural Networks

    Full text link
    The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.Comment: PhD Dissertatio

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    Towards Efficient Lifelong Machine Learning in Deep Neural Networks

    Get PDF
    Humans continually learn and adapt to new knowledge and environments throughout their lifetimes. Rarely does learning new information cause humans to catastrophically forget previous knowledge. While deep neural networks (DNNs) now rival human performance on several supervised machine perception tasks, when updated on changing data distributions, they catastrophically forget previous knowledge. Enabling DNNs to learn new information over time opens the door for new applications such as self-driving cars that adapt to seasonal changes or smartphones that adapt to changing user preferences. In this dissertation, we propose new methods and experimental paradigms for efficiently training continual DNNs without forgetting. We then apply these methods to several visual and multi-modal perception tasks including image classification, visual question answering, analogical reasoning, and attribute and relationship prediction in visual scenes

    Slowness learning for curiosity-driven agents

    Get PDF
    In the absence of external guidance, how can a robot learn to map the many raw pixels of high-dimensional visual inputs to useful action sequences? I study methods that achieve this by making robots self-motivated (curious) to continually build compact representations of sensory inputs that encode different aspects of the changing environment. Previous curiosity-based agents acquired skills by associating intrinsic rewards with world model improvements, and used reinforcement learning (RL) to learn how to get these intrinsic rewards. But unlike in previous implementations, I consider streams of high-dimensional visual inputs, where the world model is a set of compact low-dimensional representations of the high-dimensional inputs. To learn these representations, I use the slowness learning principle, which states that the underlying causes of the changing sensory inputs vary on a much slower time scale than the observed sensory inputs. The representations learned through the slowness learning principle are called slow features (SFs). Slow features have been shown to be useful for RL, since they capture the underlying transition process by extracting spatio-temporal regularities in the raw sensory inputs. However, existing techniques that learn slow features are not readily applicable to curiosity-driven online learning agents, as they estimate computationally expensive covariance matrices from the data via batch processing. The first contribution called the incremental SFA (IncSFA), is a low-complexity, online algorithm that extracts slow features without storing any input data or estimating costly covariance matrices, thereby making it suitable to be used for several online learning applications. However, IncSFA gradually forgets previously learned representations whenever the statistics of the input change. In open-ended online learning, it becomes essential to store learned representations to avoid re- learning previously learned inputs. The second contribution is an online active modular IncSFA algorithm called the curiosity-driven modular incremental slow feature analysis (Curious Dr. MISFA). Curious Dr. MISFA addresses the forgetting problem faced by IncSFA and learns expert slow feature abstractions in order from least to most costly, with theoretical guarantees. The third contribution uses the Curious Dr. MISFA algorithm in a continual curiosity-driven skill acquisition framework that enables robots to acquire, store, and re-use both abstractions and skills in an online and continual manner. I provide (a) a formal analysis of the working of the proposed algorithms; (b) compare them to the existing methods; and (c) use the iCub humanoid robot to demonstrate their application in real-world environments. These contributions together demonstrate that the online implementations of slowness learning make it suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills that map the many raw pixels of high-dimensional images to multiple sets of action sequences

    Apprentissage automatique pour le codage cognitif de la parole

    Get PDF
    Depuis les années 80, les codecs vocaux reposent sur des stratégies de codage à court terme qui fonctionnent au niveau de la sous-trame ou de la trame (généralement 5 à 20 ms). Les chercheurs ont essentiellement ajusté et combiné un nombre limité de technologies disponibles (transformation, prédiction linéaire, quantification) et de stratégies (suivi de forme d'onde, mise en forme du bruit) pour construire des architectures de codage de plus en plus complexes. Dans cette thèse, plutôt que de s'appuyer sur des stratégies de codage à court terme, nous développons un cadre alternatif pour la compression de la parole en codant les attributs de la parole qui sont des caractéristiques perceptuellement importantes des signaux vocaux. Afin d'atteindre cet objectif, nous résolvons trois problèmes de complexité croissante, à savoir la classification, la prédiction et l'apprentissage des représentations. La classification est un élément courant dans les conceptions de codecs modernes. Dans un premier temps, nous concevons un classifieur pour identifier les émotions, qui sont parmi les attributs à long terme les plus complexes de la parole. Dans une deuxième étape, nous concevons un prédicteur d'échantillon de parole, qui est un autre élément commun dans les conceptions de codecs modernes, pour mettre en évidence les avantages du traitement du signal de parole à long terme et non linéaire. Ensuite, nous explorons les variables latentes, un espace de représentations de la parole, pour coder les attributs de la parole à court et à long terme. Enfin, nous proposons un réseau décodeur pour synthétiser les signaux de parole à partir de ces représentations, ce qui constitue notre dernière étape vers la construction d'une méthode complète de compression de la parole basée sur l'apprentissage automatique de bout en bout. Bien que chaque étape de développement proposée dans cette thèse puisse faire partie d'un codec à elle seule, chaque étape fournit également des informations et une base pour la prochaine étape de développement jusqu'à ce qu'un codec entièrement basé sur l'apprentissage automatique soit atteint. Les deux premières étapes, la classification et la prédiction, fournissent de nouveaux outils qui pourraient remplacer et améliorer des éléments des codecs existants. Dans la première étape, nous utilisons une combinaison de modèle source-filtre et de machine à état liquide (LSM), pour démontrer que les caractéristiques liées aux émotions peuvent être facilement extraites et classées à l'aide d'un simple classificateur. Dans la deuxième étape, un seul réseau de bout en bout utilisant une longue mémoire à court terme (LSTM) est utilisé pour produire des trames vocales avec une qualité subjective élevée pour les applications de masquage de perte de paquets (PLC). Dans les dernières étapes, nous nous appuyons sur les résultats des étapes précédentes pour concevoir un codec entièrement basé sur l'apprentissage automatique. un réseau d'encodage, formulé à l'aide d'un réseau neuronal profond (DNN) et entraîné sur plusieurs bases de données publiques, extrait et encode les représentations de la parole en utilisant la prédiction dans un espace latent. Une approche d'apprentissage non supervisé basée sur plusieurs principes de cognition est proposée pour extraire des représentations à partir de trames de parole courtes et longues en utilisant l'information mutuelle et la perte contrastive. La capacité de ces représentations apprises à capturer divers attributs de la parole à court et à long terme est démontrée. Enfin, une structure de décodage est proposée pour synthétiser des signaux de parole à partir de ces représentations. L'entraînement contradictoire est utilisé comme une approximation des mesures subjectives de la qualité de la parole afin de synthétiser des échantillons de parole à consonance naturelle. La haute qualité perceptuelle de la parole synthétisée ainsi obtenue prouve que les représentations extraites sont efficaces pour préserver toutes sortes d'attributs de la parole et donc qu'une méthode de compression complète est démontrée avec l'approche proposée.Abstract: Since the 80s, speech codecs have relied on short-term coding strategies that operate at the subframe or frame level (typically 5 to 20ms). Researchers essentially adjusted and combined a limited number of available technologies (transform, linear prediction, quantization) and strategies (waveform matching, noise shaping) to build increasingly complex coding architectures. In this thesis, rather than relying on short-term coding strategies, we develop an alternative framework for speech compression by encoding speech attributes that are perceptually important characteristics of speech signals. In order to achieve this objective, we solve three problems of increasing complexity, namely classification, prediction and representation learning. Classification is a common element in modern codec designs. In a first step, we design a classifier to identify emotions, which are among the most complex long-term speech attributes. In a second step, we design a speech sample predictor, which is another common element in modern codec designs, to highlight the benefits of long-term and non-linear speech signal processing. Then, we explore latent variables, a space of speech representations, to encode both short-term and long-term speech attributes. Lastly, we propose a decoder network to synthesize speech signals from these representations, which constitutes our final step towards building a complete, end-to-end machine-learning based speech compression method. The first two steps, classification and prediction, provide new tools that could replace and improve elements of existing codecs. In the first step, we use a combination of source-filter model and liquid state machine (LSM), to demonstrate that features related to emotions can be easily extracted and classified using a simple classifier. In the second step, a single end-to-end network using long short-term memory (LSTM) is shown to produce speech frames with high subjective quality for packet loss concealment (PLC) applications. In the last steps, we build upon the results of previous steps to design a fully machine learning-based codec. An encoder network, formulated using a deep neural network (DNN) and trained on multiple public databases, extracts and encodes speech representations using prediction in a latent space. An unsupervised learning approach based on several principles of cognition is proposed to extract representations from both short and long frames of data using mutual information and contrastive loss. The ability of these learned representations to capture various short- and long-term speech attributes is demonstrated. Finally, a decoder structure is proposed to synthesize speech signals from these representations. Adversarial training is used as an approximation to subjective speech quality measures in order to synthesize natural-sounding speech samples. The high perceptual quality of synthesized speech thus achieved proves that the extracted representations are efficient at preserving all sorts of speech attributes and therefore that a complete compression method is demonstrated with the proposed approach

    Towards Continual Reinforcement Learning: A Review and Perspectives

    Full text link
    In this article, we aim to provide a literature review of different formulations and approaches to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We begin by discussing our perspective on why RL is a natural fit for studying continual learning. We then provide a taxonomy of different continual RL formulations and mathematically characterize the non-stationary dynamics of each setting. We go on to discuss evaluation of continual RL agents, providing an overview of benchmarks used in the literature and important metrics for understanding agent performance. Finally, we highlight open problems and challenges in bridging the gap between the current state of continual RL and findings in neuroscience. While still in its early days, the study of continual RL has the promise to develop better incremental reinforcement learners that can function in increasingly realistic applications where non-stationarity plays a vital role. These include applications such as those in the fields of healthcare, education, logistics, and robotics.Comment: Preprint, 52 pages, 8 figure
    corecore