26,603 research outputs found

    Consensus Control for Leader-follower Multi-agent Systems under Prescribed Performance Guarantees

    Full text link
    This paper addresses the problem of distributed control for leader-follower multi-agent systems under prescribed performance guarantees. Leader-follower is meant in the sense that a group of agents with external inputs are selected as leaders in order to drive the group of followers in a way that the entire system can achieve consensus within certain prescribed performance transient bounds. Under the assumption of tree graphs, a distributed control law is proposed when the decay rate of the performance functions is within a sufficient bound. Then, two classes of tree graphs that can have additional followers are investigated. Finally, several simulation examples are given to illustrate the results.Comment: 8 page

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Collaborative Summit, Protecting Water Quality Through Actions on Urban-suburban Properties, February 13-14, 2013, Williamsburg, VA

    Get PDF
    The clock is ticking for local governments. Beginning in 2014, many local governments must plan, finance, and implement stormwater management/ pollutant reduction action plans that achieve a significant decrease in polluted stormwater runoff within the next 10 to 15 years. These plans are required to meet regulatory commitments associated with Virginia Stormwater Management Program and Municipal Separate Storm Sewer System (MS4) stormwater permits, Virgina’s Watershed Implementation Plan (WIP), and the Chesapeake Bay Total Maximum Daily Load (Bay TMDL) allocations. To achieve our water quality goals, we will need to take a coordinated, structured, and collaborative approach - coordinating across sectors and creating alignment in our policies, funding, and programs to achieve a Collective Impact.1 This will require not only a certain level of commitment from a diverse group of stakeholders, but also require a certain amount of trust. It will likewise require local, regional, state, and Bay-wide programs and efforts to align their programs to support share goal

    Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups

    Get PDF
    AbstractLarger groups often have a greater ability to solve cognitive tasks compared to smaller ones or lone individuals. This is well established in social insects, navigating flocks of birds, and in groups of prey collectively vigilant for predators. Research in social insects has convincingly shown that improved cognitive performance can arise from self-organised local interactions between individuals that integrates their contributions, often referred to as swarm intelligence. This emergent collective intelligence has gained in popularity and been directly applied to groups of other animals, including fish. Despite being a likely mechanism at least partially explaining group performance in vertebrates, I argue here that other possible explanations are rarely ruled out in empirical studies. Hence, evidence for self-organised collective (or ‘swarm’) intelligence in fish is not as strong as it would first appear. These other explanations, the ‘pool-of-competence’ and the greater cognitive ability of individuals when in larger groups, are also reviewed. Also discussed is why improved group performance in general may be less often observed in animals such as shoaling fish compared to social insects. This review intends to highlight the difficulties in exploring collective intelligence in animal groups, ideally leading to further empirical work to illuminate these issues

    School business management: a quiet revolution, part 2

    Get PDF
    "Revolutions in education tend to occur quietly. The upsurge in numbers of teaching assistants and higher level classroom assistants in schools is one such revolution. Another is the growth of school to school leadership support working beyond their own school sites to support other leaders and schools in need of help. A third revolution is presently under way; it is the move to the appointment and effective deployment of school business managers (SBMs). - Page 3

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    • …
    corecore