15,372 research outputs found

    Lotaru: Locally Predicting Workflow Task Runtimes for Resource Management on Heterogeneous Infrastructures

    Full text link
    Many resource management techniques for task scheduling, energy and carbon efficiency, and cost optimization in workflows rely on a-priori task runtime knowledge. Building runtime prediction models on historical data is often not feasible in practice as workflows, their input data, and the cluster infrastructure change. Online methods, on the other hand, which estimate task runtimes on specific machines while the workflow is running, have to cope with a lack of measurements during start-up. Frequently, scientific workflows are executed on heterogeneous infrastructures consisting of machines with different CPU, I/O, and memory configurations, further complicating predicting runtimes due to different task runtimes on different machine types. This paper presents Lotaru, a method for locally predicting the runtimes of scientific workflow tasks before they are executed on heterogeneous compute clusters. Crucially, our approach does not rely on historical data and copes with a lack of training data during the start-up. To this end, we use microbenchmarks, reduce the input data to quickly profile the workflow locally, and predict a task's runtime with a Bayesian linear regression based on the gathered data points from the local workflow execution and the microbenchmarks. Due to its Bayesian approach, Lotaru provides uncertainty estimates that can be used for advanced scheduling methods on distributed cluster infrastructures. In our evaluation with five real-world scientific workflows, our method outperforms two state-of-the-art runtime prediction baselines and decreases the absolute prediction error by more than 12.5%. In a second set of experiments, the prediction performance of our method, using the predicted runtimes for state-of-the-art scheduling, carbon reduction, and cost prediction, enables results close to those achieved with perfect prior knowledge of runtimes

    Predicting Dynamic Memory Requirements for Scientific Workflow Tasks

    Full text link
    With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approac

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin

    Collaborative Reuse of Streaming Dataflows in IoT Applications

    Full text link
    Distributed Stream Processing Systems (DSPS) like Apache Storm and Spark Streaming enable composition of continuous dataflows that execute persistently over data streams. They are used by Internet of Things (IoT) applications to analyze sensor data from Smart City cyber-infrastructure, and make active utility management decisions. As the ecosystem of such IoT applications that leverage shared urban sensor streams continue to grow, applications will perform duplicate pre-processing and analytics tasks. This offers the opportunity to collaboratively reuse the outputs of overlapping dataflows, thereby improving the resource efficiency. In this paper, we propose \emph{dataflow reuse algorithms} that given a submitted dataflow, identifies the intersection of reusable tasks and streams from a collection of running dataflows to form a \emph{merged dataflow}. Similar algorithms to unmerge dataflows when they are removed are also proposed. We implement these algorithms for the popular Apache Storm DSPS, and validate their performance and resource savings for 35 synthetic dataflows based on public OPMW workflows with diverse arrival and departure distributions, and on 21 real IoT dataflows from RIoTBench.Comment: To appear in IEEE eScience Conference 201

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft
    • …
    corecore