6,524 research outputs found

    Data Management and Mining in Astrophysical Databases

    Full text link
    We analyse the issues involved in the management and mining of astrophysical data. The traditional approach to data management in the astrophysical field is not able to keep up with the increasing size of the data gathered by modern detectors. An essential role in the astrophysical research will be assumed by automatic tools for information extraction from large datasets, i.e. data mining techniques, such as clustering and classification algorithms. This asks for an approach to data management based on data warehousing, emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Clustering and classification techniques, on large datasets, pose additional requirements: computational and memory scalability with respect to the data size, interpretability and objectivity of clustering or classification results. In this study we address some possible solutions.Comment: 10 pages, Late

    Perspects in astrophysical databases

    Full text link
    Astrophysics has become a domain extremely rich of scientific data. Data mining tools are needed for information extraction from such large datasets. This asks for an approach to data management emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Moreover, clustering and classification techniques on large datasets pose additional requirements in terms of computation and memory scalability and interpretability of results. In this study we review some possible solutions

    Profiling risk factors for chronic uveitis in juvenile idiopathic arthritis: a new model for EHR-based research.

    Get PDF
    BackgroundJuvenile idiopathic arthritis is the most common rheumatic disease in children. Chronic uveitis is a common and serious comorbid condition of juvenile idiopathic arthritis, with insidious presentation and potential to cause blindness. Knowledge of clinical associations will improve risk stratification. Based on clinical observation, we hypothesized that allergic conditions are associated with chronic uveitis in juvenile idiopathic arthritis patients.MethodsThis study is a retrospective cohort study using Stanford's clinical data warehouse containing data from Lucile Packard Children's Hospital from 2000-2011 to analyze patient characteristics associated with chronic uveitis in a large juvenile idiopathic arthritis cohort. Clinical notes in patients under 16 years of age were processed via a validated text analytics pipeline. Bivariate-associated variables were used in a multivariate logistic regression adjusted for age, gender, and race. Previously reported associations were evaluated to validate our methods. The main outcome measure was presence of terms indicating allergy or allergy medications use overrepresented in juvenile idiopathic arthritis patients with chronic uveitis. Residual text features were then used in unsupervised hierarchical clustering to compare clinical text similarity between patients with and without uveitis.ResultsPreviously reported associations with uveitis in juvenile idiopathic arthritis patients (earlier age at arthritis diagnosis, oligoarticular-onset disease, antinuclear antibody status, history of psoriasis) were reproduced in our study. Use of allergy medications and terms describing allergic conditions were independently associated with chronic uveitis. The association with allergy drugs when adjusted for known associations remained significant (OR 2.54, 95% CI 1.22-5.4).ConclusionsThis study shows the potential of using a validated text analytics pipeline on clinical data warehouses to examine practice-based evidence for evaluating hypotheses formed during patient care. Our study reproduces four known associations with uveitis development in juvenile idiopathic arthritis patients, and reports a new association between allergic conditions and chronic uveitis in juvenile idiopathic arthritis patients

    Online fulfillment: f-warehouse order consolidation and bops store picking problems

    Get PDF
    Fulfillment of online retail orders is a critical challenge for retailers since the legacy infrastructure and control methods are ill suited for online retail. The primary performance goal of online fulfillment is speed or fast fulfillment, requiring received orders to be shipped or ready for pickup within a few hours. Several novel numerical problems characterize fast fulfillment operations and this research solves two such problems. Order fulfillment warehouses (F-Warehouses) are a critical component of the physical internet behind online retail supply chains. Two key distinguishing features of an F-Warehouse are (i) Explosive Storage Policy – A unique item can be stored simultaneously in multiple bin locations dispersed through the warehouse, and (ii) Commingled Bins – A bin can stock several different items simultaneously. The inventory dispersion profile of an item is therefore temporal and non-repetitive. The order arrival process is continuous, and each order consists of one or more items. From the set of pending orders, efficient picking lists of 10-15 items are generated. A picklist of items is collected in a tote, which is then transported to a packaging station, where items belonging to the same order are consolidated into a shipment package. There are multiple such stations. This research formulates and solves the order consolidation problem. At any time, a batch of totes are to be processed through several available order packaging stations. Tote assignment to a station will determine whether an order will be shipped in a single package or multiple packages. Reduced shipping costs are a key operational goal of an online retailer, and the number of packages is a determining factor. The decision variable is which station a tote should be assigned to, and the performance objective is to minimize the number of packages and balance the packaging station workload. This research first formulates the order consolidation problem as a mixed integer programming model, and then develops two fast heuristics (#1 and #2) plus two clustering algorithm derived solutions. For small problems, the heuristic #2 is on average within 4.1% of the optimal solution. For larger problems heuristic #2 outperforms all other algorithms. Performance behavior of heuristic #2 is further studied as a function of several characteristics. S-Strategy fulfillment is a store-based solution for fulfilling online customer orders. The S-Strategy is driven by two key motivations, first, retailers have a network of stores where the inventory is already dispersed, and second, the expectation is that forward positioned inventory could be faster and more economical than a warehouse based F-Strategy. Orders are picked from store inventory and then the customer picks up from the store (BOPS). A BOPS store has two distinguishing features (i) In addition to shelf stock, the layout includes a space constrained back stock of selected items, and (ii) a set of dedicated pickers who are scheduled to fulfill orders. This research solves two BOFS related problems: (i) Back stock strategy: Assignment of items located in the back stock and (ii) Picker scheduling: Effect of numbers of picker and work hours. A continuous flow of incoming orders is assumed for both problems and the objective is fulfillment time and labor cost minimization. For the back-stock problem an assignment rule based on order frequency, forward location and order basket correlations achieves a 17.6% improvement over a no back-stock store, while a rule based only on order frequency achieves a 12.4 % improvement. Additional experiments across a range of order baskets are reported

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Full text link
    Visual robot navigation within large-scale, semi-structured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state-of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications. In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.Comment: 8 page
    • 

    corecore