3,538 research outputs found

    Environmental Hazard Analysis - a Variant of Preliminary Hazard Analysis for Autonomous Mobile Robots

    Get PDF
    © 2014, Springer Science+Business Media Dordrecht. Robot manufacturers will be required to demonstrate objectively that all reasonably foreseeable hazards have been identified in any robotic product design that is to be marketed commercially. This is problematic for autonomous mobile robots because conventional methods, which have been developed for automatic systems do not assist safety analysts in identifying non-mission interactions with environmental features that are not directly associated with the robot’s design mission, and which may comprise the majority of the required tasks of autonomous robots. In this paper we develop a new variant of preliminary hazard analysis that is explicitly aimed at identifying non-mission interactions by means of new sets of guidewords not normally found in existing variants. We develop the required features of the method and describe its application to several small trials conducted at Bristol Robotics Laboratory in the 2011–2012 period

    Adaptive and intelligent navigation of autonomous planetary rovers - A survey

    Get PDF
    The application of robotics and autonomous systems in space has increased dramatically. The ongoing Mars rover mission involving the Curiosity rover, along with the success of its predecessors, is a key milestone that showcases the existing capabilities of robotic technology. Nevertheless, there has still been a heavy reliance on human tele-operators to drive these systems. Reducing the reliance on human experts for navigational tasks on Mars remains a major challenge due to the harsh and complex nature of the Martian terrains. The development of a truly autonomous rover system with the capability to be effectively navigated in such environments requires intelligent and adaptive methods fitting for a system with limited resources. This paper surveys a representative selection of work applicable to autonomous planetary rover navigation, discussing some ongoing challenges and promising future research directions from the perspectives of the authors

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    Novel approaches for the safety of human-robot interaction

    Get PDF
    In recent years there has been a concerted effort to address many of the safety issues associated with physical human-robot interaction (pHRI). However, a number of challenges remain. For personal robots, and those intended to operate in unstructured environments, the problem of safety is compounded. We believe that the safety issue is a primary factor in wide scale adoption of personal robots, and until these issues are addressed, commercial enterprises will be unlikely to invest heavily in their development.In this thesis we argue that traditional system design techniques fail to capture the complexities associated with dynamic environments. This is based on a careful analysis of current design processes, which looks at how effectively they identify hazards that may arise in typical environments that a personal robot may be required to operate in. Based on this investigation, we show how the adoption of a hazard check list that highlights particular hazardous areas, can be used to improve current hazard analysis techniques.A novel safety-driven control system architecture is presented, which attempts to address many of the weaknesses identified with the present designs found in the literature. The new architecture design centres around safety, and the concept of a `safety policy' is introduced. These safety policies are shown to be an effective way of describing safety systems as a set of rules that dictate how the system should behave in potentially hazardous situations.A safety analysis methodology is introduced, which integrates both our hazard analysis technique and the implementation of the safety layer of our control system. This methodology builds on traditional functional hazard analysis, with the addition of processes aimed to improve the safety of personal robots. This is achieved with the use of a safety system, developed during the hazard analysis stage. This safety system, called the safety protection system, is initially used to verify that safety constraints, identified during hazard analysis, have been implemented appropriately. Subsequently it serves as a high-level safety enforcer, by governing the actions of the robot and preventing the control layer from performing unsafe operations.To demonstrate the effectiveness of the design, a series of experiments have been conducted using both simulation environments and physical hardware. These experiments demonstrate the effectiveness of the safety-driven control system for performing tasks safely, while maintaining a high level of availability
    • …
    corecore