968 research outputs found

    Operating System Concepts for Reconfigurable Computing: Review and Survey

    Get PDF
    One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open problems, not covered by these already available systems, are identified

    Efficient Algorithms for Online Task Placement on Runtime Partially Reconfigurable FPGA

    Get PDF
    Recent generations of FPGAs allow run-time partial reconfiguration. One of the challenging problems in such a multitasking systems is online placement of task. Many online task placement algorithms designed for such partially reconfigurable systems have been proposed to provide efficient and fast task placement. In this paper two different approaches are being used to place the incoming tasks. The first method is uses a run-length based representation that defines the vacant slots on the FPGA. This compact representation allows the algorithm to locate a vacant area suitable to accommodate the incoming task quickly. In the proposed FPGA model, the CLBs are numbered according to Peano Space filling curve model. The second approach is based on harmonic packing. Simulation experiments indicate that proposed techniques result in low ratio of task rejection compared to existing techniques

    Reliability and Makespan Optimization of Hardware Task Graphs in Partially Reconfigurable Platforms

    Get PDF
    This paper addresses the problem of reliability and makespan optimization of hardware task graphs in reconfigurable platforms by applying fault tolerance (FT) techniques to the running tasks based on the exploration of the Pareto set of solutions. In the presented solution, in contrast to the existing approaches in the literature, task graph scheduling, tasks parallelism, reconfiguration delay, and FT requirements are taken into account altogether. This paper first presents a model for hardware task graphs, task prefetch and scheduling, reconfigurable computer, and a fault model for reliability. Then, a mathematical model of an integer nonlinear multi-objective optimization problem is presented for improving the FT of hardware task graphs, scheduled in partially reconfigurable platforms. Experimental results show the positive impacts of choosing the FT techniques selected by the proposed solution, which is named Pareto-based. Thus, in comparison to nonfault-tolerant designs or other state-of-the-art FT approaches, without increasing makespan, about 850% mean time to failure (MTTF) improvement is achieved and, without degrading reliability, makespan is improved by 25%. In addition, experiments in fault-varying environments have demonstrated that the presented approach outperforms the existing state-of-the-art adaptive FT techniques in terms of both MTTF and makespan
    • …
    corecore