464 research outputs found

    Classifying sequences by the optimized dissimilarity space embedding approach: a case study on the solubility analysis of the E. coli proteome

    Full text link
    We evaluate a version of the recently-proposed classification system named Optimized Dissimilarity Space Embedding (ODSE) that operates in the input space of sequences of generic objects. The ODSE system has been originally presented as a classification system for patterns represented as labeled graphs. However, since ODSE is founded on the dissimilarity space representation of the input data, the classifier can be easily adapted to any input domain where it is possible to define a meaningful dissimilarity measure. Here we demonstrate the effectiveness of the ODSE classifier for sequences by considering an application dealing with the recognition of the solubility degree of the Escherichia coli proteome. Solubility, or analogously aggregation propensity, is an important property of protein molecules, which is intimately related to the mechanisms underlying the chemico-physical process of folding. Each protein of our dataset is initially associated with a solubility degree and it is represented as a sequence of symbols, denoting the 20 amino acid residues. The herein obtained computational results, which we stress that have been achieved with no context-dependent tuning of the ODSE system, confirm the validity and generality of the ODSE-based approach for structured data classification.Comment: 10 pages, 49 reference

    Math Search for the Masses: Multimodal Search Interfaces and Appearance-Based Retrieval

    Full text link
    We summarize math search engines and search interfaces produced by the Document and Pattern Recognition Lab in recent years, and in particular the min math search interface and the Tangent search engine. Source code for both systems are publicly available. "The Masses" refers to our emphasis on creating systems for mathematical non-experts, who may be looking to define unfamiliar notation, or browse documents based on the visual appearance of formulae rather than their mathematical semantics.Comment: Paper for Invited Talk at 2015 Conference on Intelligent Computer Mathematics (July, Washington DC

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Classification and Verification of Online Handwritten Signatures with Time Causal Information Theory Quantifiers

    Get PDF
    We present a new approach for online handwritten signature classification and verification based on descriptors stemming from Information Theory. The proposal uses the Shannon Entropy, the Statistical Complexity, and the Fisher Information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results produced surpass state-of-the-art techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the training sample, and we also use it to classify the signatures into meaningful groups.Comment: Submitted to PLOS On

    Symbolic and Visual Retrieval of Mathematical Notation using Formula Graph Symbol Pair Matching and Structural Alignment

    Get PDF
    Large data collections containing millions of math formulae in different formats are available on-line. Retrieving math expressions from these collections is challenging. We propose a framework for retrieval of mathematical notation using symbol pairs extracted from visual and semantic representations of mathematical expressions on the symbolic domain for retrieval of text documents. We further adapt our model for retrieval of mathematical notation on images and lecture videos. Graph-based representations are used on each modality to describe math formulas. For symbolic formula retrieval, where the structure is known, we use symbol layout trees and operator trees. For image-based formula retrieval, since the structure is unknown we use a more general Line of Sight graph representation. Paths of these graphs define symbol pairs tuples that are used as the entries for our inverted index of mathematical notation. Our retrieval framework uses a three-stage approach with a fast selection of candidates as the first layer, a more detailed matching algorithm with similarity metric computation in the second stage, and finally when relevance assessments are available, we use an optional third layer with linear regression for estimation of relevance using multiple similarity scores for final re-ranking. Our model has been evaluated using large collections of documents, and preliminary results are presented for videos and cross-modal search. The proposed framework can be adapted for other domains like chemistry or technical diagrams where two visually similar elements from a collection are usually related to each other

    Deep Learning-based Recognition of Devanagari Handwritten Characters

    Get PDF
    Numerous techniques have been used over many years to study handwriting recognition. There are two methods for reading handwriting, one of which is online and the other offline. Image recognition is the main part of the handwriting recognition process. Image recognition gives careful consideration to the picture's dimensions, viewing angle, and image quality. Machine learning and deep learning techniques are the two areas of focus for developers looking to increase the intelligence of computers. A person may learn to perform a task by repeatedly exercising it until they recall how to do it. His brain's neurons begin to work automatically, enabling him to carry out the task he has quickly learned. This and deep learning are fairly similar. It uses a variety of neural network designs to address a range of problems. The convolution neural network (CNN) is a very effective technique for handwriting and picture detection

    English character recognition algorithm by improving the weights of MLP neural network with dragonfly algorithm

    Get PDF
    Character Recognition (CR) is taken into consideration for years. Meanwhile, the neural network plays an important role in recognizing handwritten characters. Many character identification reports have been publishing in English, but still the minimum training timing and high accuracy of handwriting English symbols and characters by utilizing a method of neural networks are represents as open problems. Therefore, creating a character recognition system manually and automatically is very important. In this research, an attempt has been done to incubate an automatic symbols and character system for recognition for English with minimum training and a very high recognition accuracy and classification timing. In the proposed idea for improving the weights of the MLP neural network method in the process of teaching and learning character recognition, the dragonfly optimization algorithm has been used. The innovation of the proposed detection system is that with a combination of dragonfly optimization technique and MLP neural networks, the precisions of the system are recovered, and the computing time is minimized. The approach which was used in this study to identify English characters has high accuracy and minimum training time

    Combining representations for improved sketch recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 89-96).Sketching is a common means of conveying, representing, and preserving information, and it has become a subject of research as a method for human-computer interaction, specifically in the area of computer-aided design. Digitally collected sketches contain both spatial and temporal information; additionally, they may contain a conceptual structure of shapes and sub shapes. These multiple aspects suggest several ways of representing sketches, each with advantages and disadvantages for recognition. Most existing sketch recognitions systems are based on a single representation and do not use all available information. We propose combining several representations and systems as a way to improve recognition accuracy. This thesis presents two methods for combining recognition systems. The first improves recognition by improving segmentation, while the second seeks to predict how well systems will recognize a given domain or symbol and combine their outputs accordingly. We show that combining several recognition systems based on different representations can improve the accuracy of existing recognition methods.by Sonya J. Cates.Ph.D
    • …
    corecore