2,769 research outputs found

    Feedback Synthesis for Controllable Underactuated Systems using Sequential Second Order Actions

    Full text link
    This paper derives nonlinear feedback control synthesis for general control affine systems using second-order actions---the needle variations of optimal control---as the basis for choosing each control response to the current state. A second result of the paper is that the method provably exploits the nonlinear controllability of a system by virtue of an explicit dependence of the second-order needle variation on the Lie bracket between vector fields. As a result, each control decision necessarily decreases the objective when the system is nonlinearly controllable using first-order Lie brackets. Simulation results using a differential drive cart, an underactuated kinematic vehicle in three dimensions, and an underactuated dynamic model of an underwater vehicle demonstrate that the method finds control solutions when the first-order analysis is singular. Moreover, the simulated examples demonstrate superior convergence when compared to synthesis based on first-order needle variations. Lastly, the underactuated dynamic underwater vehicle model demonstrates the convergence even in the presence of a velocity field.Comment: 9 page

    A Developmental Evolutionary Learning Framework for Robotic Chinese Stroke Writing

    Get PDF
    The ability of robots to write Chinese strokes, which is recognized as a sophisticated task, involves complicated kinematic control algorithms. The conventional approaches for robotic writing of Chinese strokes often suffer from limited font generation methods, which limits the ability of robots to perform high-quality writing. This paper instead proposes a developmental evolutionary learning framework that enables a robot to learn to write fundamental Chinese strokes. The framework first considers the learning process of robotic writing as an evolutionary easy-to-difficult procedure. Then, a developmental learning mechanism called “Lift-constraint, act and saturate” that stems from developmental robotics is used to determine how the robot learns tasks ranging from simple to difficult by building on the learning results from the easy tasks. The developmental constraints, which include altitude adjustments, number of mutation points, and stroke trajectory points, determine the learning complexity of robot writing. The developmental algorithm divides the evolutionary procedure into three developmental learning stages. In each stage, the stroke trajectory points gradually increase, while the number of mutation points and adjustment altitudes gradually decrease, allowing the learning difficulties involved in these three stages to be categorized as easy, medium, and difficult. Our robot starts with an easy learning task and then gradually progresses to the medium and difficult tasks. Under various developmental constraint setups in each stage, the robot applies an evolutionary algorithm to handle the basic shapes of the Chinese strokes and eventually acquires the ability to write with good quality. The experimental results demonstrate that the proposed framework allows a calligraphic robot to gradually learn to write five fundamental Chinese strokes and also reveal a developmental pattern similar to that of humans. Compared to an evolutionary algorithm without the developmental mechanism, the proposed framework achieves good writing quality more rapidly

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Construction of control barrier function and C2C^2 reference trajectory for constrained attitude maneuvers

    Full text link
    Constrained attitude maneuvers have numerous applications in robotics and aerospace. In our previous work, a general framework to this problem was proposed with resolution completeness guarantee. However, a smooth reference trajectory and a low-level safety-critical controller were lacking. In this work, we propose a novel construction of a C2C^2 continuous reference trajectory based on B\'ezier curves on SO(3) SO(3) that evolves within predetermined cells and eliminates previous stop-and-go behavior. Moreover, we propose a novel zeroing control barrier function on SO(3) SO(3) that provides a safety certificate over a set of overlapping cells on SO(3) SO(3) while avoiding nonsmooth analysis. The safety certificate is given as a linear constraint on the control input and implemented in real-time. A remedy is proposed to handle the states where the coefficient of the control input in the linear constraint vanishes. Numerical simulations are given to verify the advantages of the proposed method.Comment: Extended version of an accepted paper at IEEE CDC 202
    corecore