692 research outputs found

    Dynamic Data Mining: Methodology and Algorithms

    No full text
    Supervised data stream mining has become an important and challenging data mining task in modern organizations. The key challenges are threefold: (1) a possibly infinite number of streaming examples and time-critical analysis constraints; (2) concept drift; and (3) skewed data distributions. To address these three challenges, this thesis proposes the novel dynamic data mining (DDM) methodology by effectively applying supervised ensemble models to data stream mining. DDM can be loosely defined as categorization-organization-selection of supervised ensemble models. It is inspired by the idea that although the underlying concepts in a data stream are time-varying, their distinctions can be identified. Therefore, the models trained on the distinct concepts can be dynamically selected in order to classify incoming examples of similar concepts. First, following the general paradigm of DDM, we examine the different concept-drifting stream mining scenarios and propose corresponding effective and efficient data mining algorithms. • To address concept drift caused merely by changes of variable distributions, which we term pseudo concept drift, base models built on categorized streaming data are organized and selected in line with their corresponding variable distribution characteristics. • To address concept drift caused by changes of variable and class joint distributions, which we term true concept drift, an effective data categorization scheme is introduced. A group of working models is dynamically organized and selected for reacting to the drifting concept. Secondly, we introduce an integration stream mining framework, enabling the paradigm advocated by DDM to be widely applicable for other stream mining problems. Therefore, we are able to introduce easily six effective algorithms for mining data streams with skewed class distributions. In addition, we also introduce a new ensemble model approach for batch learning, following the same methodology. Both theoretical and empirical studies demonstrate its effectiveness. Future work would be targeted at improving the effectiveness and efficiency of the proposed algorithms. Meantime, we would explore the possibilities of using the integration framework to solve other open stream mining research problems

    An Online Sparse Streaming Feature Selection Algorithm

    Full text link
    Online streaming feature selection (OSFS), which conducts feature selection in an online manner, plays an important role in dealing with high-dimensional data. In many real applications such as intelligent healthcare platform, streaming feature always has some missing data, which raises a crucial challenge in conducting OSFS, i.e., how to establish the uncertain relationship between sparse streaming features and labels. Unfortunately, existing OSFS algorithms never consider such uncertain relationship. To fill this gap, we in this paper propose an online sparse streaming feature selection with uncertainty (OS2FSU) algorithm. OS2FSU consists of two main parts: 1) latent factor analysis is utilized to pre-estimate the missing data in sparse streaming features before con-ducting feature selection, and 2) fuzzy logic and neighborhood rough set are employed to alleviate the uncertainty between estimated streaming features and labels during conducting feature selection. In the experiments, OS2FSU is compared with five state-of-the-art OSFS algorithms on six real datasets. The results demonstrate that OS2FSU outperforms its competitors when missing data are encountered in OSFS

    Autoencoder Based Iterative Modeling and Multivariate Time-Series Subsequence Clustering Algorithm

    Full text link
    This paper introduces an algorithm for the detection of change-points and the identification of the corresponding subsequences in transient multivariate time-series data (MTSD). The analysis of such data has become more and more important due to the increase of availability in many industrial fields. Labeling, sorting or filtering highly transient measurement data for training condition based maintenance (CbM) models is cumbersome and error-prone. For some applications it can be sufficient to filter measurements by simple thresholds or finding change-points based on changes in mean value and variation. But a robust diagnosis of a component within a component group for example, which has a complex non-linear correlation between multiple sensor values, a simple approach would not be feasible. No meaningful and coherent measurement data which could be used for training a CbM model would emerge. Therefore, we introduce an algorithm which uses a recurrent neural network (RNN) based Autoencoder (AE) which is iteratively trained on incoming data. The scoring function uses the reconstruction error and latent space information. A model of the identified subsequence is saved and used for recognition of repeating subsequences as well as fast offline clustering. For evaluation, we propose a new similarity measure based on the curvature for a more intuitive time-series subsequence clustering metric. A comparison with seven other state-of-the-art algorithms and eight datasets shows the capability and the increased performance of our algorithm to cluster MTSD online and offline in conjunction with mechatronic systems.Comment: 26 pages, 11 figures, for associated python code repositories see https://github.com/Jokonu/mt3scm and https://github.com/Jokonu/abimca; Minor spelling and grammar corrections, fixed wrong bibtex entry for SOStream, some improvements and corrections in formulas of section

    CONTINUAL LEARNING FOR MULTI-LABEL DRIFTING DATA STREAMS USING HOMOGENEOUS ENSEMBLE OF SELF-ADJUSTING NEAREST NEIGHBORS

    Get PDF
    Multi-label data streams are sequences of multi-label instances arriving over time to a multi-label classifier. The properties of the data stream may continuously change due to concept drift. Therefore, algorithms must adapt constantly to the new data distributions. In this paper we propose a novel ensemble method for multi-label drifting streams named Homogeneous Ensemble of Self-Adjusting Nearest Neighbors (HESAkNN). It leverages a self-adjusting kNN as a base classifier with the advantages of ensembles to adapt to concept drift in the multi-label environment. To promote diverse knowledge within the ensemble, each base classifier is given a unique subset of features and samples to train on. These samples are distributed to classifiers in a probabilistic manner that follows a Poisson distribution as in online bagging. Accompanying these mechanisms, a collection of ADWIN detectors monitor each classifier for the occurrence of a concept drift. Upon detection, the algorithm automatically trains additional classifiers in the background to attempt to capture new concepts. After a pre-determined number of instances, both active and background classifiers are compared and only the most accurate classifiers are selected to populate the new active ensemble. The experimental study compares the proposed approach with 30 other classifiers including problem transformation, algorithm adaptation, kNNs, and ensembles on 30 diverse multi-label datasets and 11 performance metrics. Results validated using non-parametric statistical analysis support the better performance of the heterogeneous ensemble and highlights the contribution of the feature and instance diversity in improving the performance of the ensemble

    Adaptive Algorithms For Classification On High-Frequency Data Streams: Application To Finance

    Get PDF
    Mención Internacional en el título de doctorIn recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the nonstationary nature and the likelihood of drastic structural changes in financial markets. The most recent literature suggests the use of conventional machine learning and statistical approaches for this. However, these techniques are unable or slow to adapt to non-stationarities and may require re-training over time, which is computationally expensive and brings financial risks. This thesis proposes a set of adaptive algorithms to deal with high-frequency data streams and applies these to the financial domain. We present approaches to handle different types of concept drifts and perform predictions using up-to-date models. These mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The core experiments of this thesis are based on the prediction of the price movement direction at different intraday resolutions in the SPDR S&P 500 exchange-traded fund. The proposed algorithms are benchmarked against other popular methods from the data stream mining literature and achieve competitive results. We believe that this thesis opens good research prospects for financial forecasting during market instability and structural breaks. Results have shown that our proposed methods can improve prediction accuracy in many of these scenarios. Indeed, the results obtained are compatible with ideas against the efficient market hypothesis. However, we cannot claim that we can beat consistently buy and hold; therefore, we cannot reject it.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Gustavo Recio Isasi.- Secretario: Pedro Isasi Viñuela.- Vocal: Sandra García Rodrígue

    A Survey on Concept Drift Adaptation

    Get PDF
    Concept drift primarily refers to an online supervised learning scenario when the relation between the in- put data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, discuss the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. This introduction to the concept drift adaptation presents the state of the art techniques and a collection of benchmarks for re- searchers, industry analysts and practitioners. The survey aims at covering the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art

    Continual learning from stationary and non-stationary data

    Get PDF
    Continual learning aims at developing models that are capable of working on constantly evolving problems over a long-time horizon. In such environments, we can distinguish three essential aspects of training and maintaining machine learning models - incorporating new knowledge, retaining it and reacting to changes. Each of them poses its own challenges, constituting a compound problem with multiple goals. Remembering previously incorporated concepts is the main property of a model that is required when dealing with stationary distributions. In non-stationary environments, models should be capable of selectively forgetting outdated decision boundaries and adapting to new concepts. Finally, a significant difficulty can be found in combining these two abilities within a single learning algorithm, since, in such scenarios, we have to balance remembering and forgetting instead of focusing only on one aspect. The presented dissertation addressed these problems in an exploratory way. Its main goal was to grasp the continual learning paradigm as a whole, analyze its different branches and tackle identified issues covering various aspects of learning from sequentially incoming data. By doing so, this work not only filled several gaps in the current continual learning research but also emphasized the complexity and diversity of challenges existing in this domain. Comprehensive experiments conducted for all of the presented contributions have demonstrated their effectiveness and substantiated the validity of the stated claims

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances
    • …
    corecore