16,920 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Fuzzy Image Segmentation using Suppressed Fuzzy C-Means Clustering

    Get PDF
    Clustering algorithms are highly dependent on the features used and the type of the objects in a particular image. By considering object similar surface variations (SSV) as well as the arbitrariness of the fuzzy c-means (FCM) algorithm for pixellocation, a fuzzy image segmentation considering object surface similarity (FSOS) algorithm was developed, but it was unable to segment objects having SSV satisfactorily. To improve the effectiveness of FSOS in segmenting objects with SSV, thispaper introduces a new fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm, which directly considers object SSV and incorporates the use of suppressed-FCM (SFCM) using pixel location. The algorithmalso perceptually selects the threshold within the range of human visual perception. Both qualitative and quantitative resultsconfirm the improved segmentation performance of FSSC compared with other algorithms including FSOS, FCM,possibilistic c-means (PCM) and SFCM for many different images
    • …
    corecore