47 research outputs found

    Interval type-2 intuitionistic fuzzy logic system for time series and identification problems - a comparative study

    Get PDF
    This paper proposes a sliding mode control-based learning of interval type-2 intuitionistic fuzzy logic system for time series and identification problems. Until now, derivative-based algorithms such as gradient descent back propagation, extended Kalman filter, decoupled extended Kalman filter and hybrid method of decoupled extended Kalman filter and gradient descent methods have been utilized for the optimization of the parameters of interval type-2 intuitionistic fuzzy logic systems. The proposed model is based on a Takagi-Sugeno-Kang inference system. The evaluations of the model are conducted using both real world and artificially generated datasets. Analysis of results reveals that the proposed interval type-2 intuitionistic fuzzy logic system trained with sliding mode control learning algorithm (derivative-free) do outperforms some existing models in terms of the test root mean squared error while competing favourable with other models in the literature. Moreover, the proposed model may stand as a good choice for real time applications where running time is paramount compared to the derivative-based models

    Hybrid intelligent parameter tuning approach for COVID-19 time series modeling and prediction

    Get PDF
    A novel hybrid intelligent approach for tuning the parameters of Interval Type-2 Intuitionistic Fuzzy Logic System (IT2IFLS) is introduced for the modeling and prediction of coronavirus disease 2019 (COVID-19) time series. COVID-19 is known to be a virus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2) with a huge negative impact on human, work and world economy. Globally, more than 100 million people have been infected with over two million deaths and it is not certain when the pandemic will end. Predicting the trend of the COVID-19 therefore becomes an important and challenging task. Many approaches ranging from statistical approaches to machine learning methods have been formulated and applied for the prediction of the disease. In this work, the sliding mode control learning algorithm is used to adjust the parameters of the antecedent parts of  IT2IFLS system while the gradient descent backpropagation is adopted to tune the consequent parameters in a hybrid manner. The results of the hybrid intelligent learning model are compared with results of single learning models using sliding mode control and gradient descent algorithms and found to provide good performance in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) especially in noisy environments. The type-2 hybrid model also outperforms its type-1 counterparts in the different problem instances

    Neutrosophic SuperHyperAlgebra and New Types of Topologies

    Get PDF
    In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology

    The Stock Exchange Prediction using Machine Learning Techniques: A Comprehensive and Systematic Literature Review

    Get PDF
    This literature review identifies and analyzes research topic trends, types of data sets, learning algorithm, methods improvements, and frameworks used in stock exchange prediction. A total of 81 studies were investigated, which were published regarding stock predictions in the period January 2015 to June 2020 which took into account the inclusion and exclusion criteria. The literature review methodology is carried out in three major phases: review planning, implementation, and report preparation, in nine steps from defining systematic review requirements to presentation of results. Estimation or regression, clustering, association, classification, and preprocessing analysis of data sets are the five main focuses revealed in the main study of stock prediction research. The classification method gets a share of 35.80% from related studies, the estimation method is 56.79%, data analytics is 4.94%, the rest is clustering and association is 1.23%. Furthermore, the use of the technical indicator data set is 74.07%, the rest are combinations of datasets. To develop a stock prediction model 48 different methods have been applied, 9 of the most widely applied methods were identified. The best method in terms of accuracy and also small error rate such as SVM, DNN, CNN, RNN, LSTM, bagging ensembles such as RF, boosting ensembles such as XGBoost, ensemble majority vote and the meta-learner approach is ensemble Stacking. Several techniques are proposed to improve prediction accuracy by combining several methods, using boosting algorithms, adding feature selection and using parameter and hyper-parameter optimization

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

    Get PDF
    CCTV cameras installed for continuous surveillance generate enormous amounts of data daily, forging the term “Big Video Data” (BVD). The active practice of BVD includes intelligent surveillance and activity recognition, among other challenging tasks. To efficiently address these tasks, the computer vision research community has provided monitoring systems, activity recognition methods, and many other computationally complex solutions for the purposeful usage of BVD. Unfortunately, the limited capabilities of these methods, higher computational complexity, and stringent installation requirements hinder their practical implementation in real-world scenarios, which still demand human operators sitting in front of cameras to monitor activities or make actionable decisions based on BVD. The usage of human-like logic, known as fuzzy logic, has been employed emerging for various data science applications such as control systems, image processing, decision making, routing, and advanced safety-critical systems. This is due to its ability to handle various sources of real world domain and data uncertainties, generating easily adaptable and explainable data-based models. Fuzzy logic can be effectively used for surveillance as a complementary for huge-sized artificial intelligence models and tiresome training procedures. In this paper, we draw researchers’ attention towards the usage of fuzzy logic for surveillance in the context of BVD. We carry out a comprehensive literature survey of methods for vision sensory data analytics that resort to fuzzy logic concepts. Our overview highlights the advantages, downsides, and challenges in existing video analysis methods based on fuzzy logic for surveillance applications. We enumerate and discuss the datasets used by these methods, and finally provide an outlook towards future research directions derived from our critical assessment of the efforts invested so far in this exciting field

    Review of automated time series forecasting pipelines

    Get PDF
    Time series forecasting is fundamental for various use cases in different domains such as energy systems and economics. Creating a forecasting model for a specific use case requires an iterative and complex design process. The typical design process includes the five sections (1) data pre-processing, (2) feature engineering, (3) hyperparameter optimization, (4) forecasting method selection, and (5) forecast ensembling, which are commonly organized in a pipeline structure. One promising approach to handle the ever-growing demand for time series forecasts is automating this design process. The present paper, thus, analyzes the existing literature on automated time series forecasting pipelines to investigate how to automate the design process of forecasting models. Thereby, we consider both Automated Machine Learning (AutoML) and automated statistical forecasting methods in a single forecasting pipeline. For this purpose, we firstly present and compare the proposed automation methods for each pipeline section. Secondly, we analyze the automation methods regarding their interaction, combination, and coverage of the five pipeline sections. For both, we discuss the literature, identify problems, give recommendations, and suggest future research. This review reveals that the majority of papers only cover two or three of the five pipeline sections. We conclude that future research has to holistically consider the automation of the forecasting pipeline to enable the large-scale application of time series forecasting

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner
    corecore