284 research outputs found

    Modeling virtualized application performance from hypervisor counters

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 61-64).Managing a virtualized datacenter has grown more challenging, as each virtual machine's service level agreement (SLA) must be satisfied, when the service levels are generally inaccessible to the hypervisor. To aid in VM consolidation and service level assurance, we develop a modeling technique that generates accurate models of service level. Using only hypervisor counters as inputs, we train models to predict application response times and predict SLA violations. To collect training data, we conduct a simulation phase which stresses the application across many workloads levels, and collects each response time. Simultaneously, hypervisor performance counters are collected. Afterwards, the data is synchronized and used as training data in ensemble-based genetic programming for symbolic regression. This modeling technique is quite efficient at dealing with high-dimensional datasets, and it also generates interpretable models. After training models for web servers and virtual desktops, we test generalization across different content. In our experiments, we found that our technique could distill small subsets of important hypervisor counters from over 700 counters. This was tested for both Apache web servers and Windows-based virtual desktop infrastructures. For the web servers, we accurately modeled the breakdown points and also the service levels. Our models could predict service levels with 90.5% accuracy on a test set. On a untrained scenario with completely different contending content, our models predict service levels with 70% accuracy, but predict SLA violation with 92.7% accuracy. For the virtual desktops, on test scenarios similar to training scenarios, model accuracy was 97.6%. Our main contribution is demonstrating that a completely data-driven approach to application performance modeling can be successful. In contrast to many other works, our models do not use workload level or response times as inputs to the models, but nevertheless predicts service level accurately. Our approach also lets the models determine which inputs are important to a particular model's performance, rather than hand choosing a few inputs to train on.by Lawrence L. Chan.M.Eng

    Taming Energy Costs of Large Enterprise Systems Through Adaptive Provisioning

    Get PDF
    One of the most pressing concerns in modern datacenter management is the rising cost of operation. Therefore, reducing variable expense, such as energy cost, has become a number one priority. However, reducing energy cost in large distributed enterprise system is an open research topic. These systems are commonly subjected to highly volatile workload processes and characterized by complex performance dependencies. This paper explicitly addresses this challenge and presents a novel approach to Taming Energy Costs of Larger Enterprise Systems (Tecless). Our adaptive provisioning methodology combines a low-level technical perspective on distributed systems with a high-level treatment of workload processes. More concretely, Tecless fuses an empirical bottleneck detection model with a statistical workload prediction model. Our methodology forecasts the system load online, which enables on-demand infrastructure adaption while continuously guaranteeing quality of service. In our analysis we show that the prediction of future workload allows adaptive provisioning with a power saving potential of up 25 percent of the total energy cost

    Intelligent Resource Scheduling at Scale: a Machine Learning Perspective

    Get PDF
    Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement

    Learning-based run-time power and energy management of multi/many-core systems: current and future trends

    Get PDF
    Multi/Many-core systems are prevalent in several application domains targeting different scales of computing such as embedded and cloud computing. These systems are able to fulfil the everincreasing performance requirements by exploiting their parallel processing capabilities. However, effective power/energy management is required during system operations due to several reasons such as to increase the operational time of battery operated systems, reduce the energy cost of datacenters, and improve thermal efficiency and reliability. This article provides an extensive survey of learning-based run-time power/energy management approaches. The survey includes a taxonomy of the learning-based approaches. These approaches perform design-time and/or run-time power/energy management by employing some learning principles such as reinforcement learning. The survey also highlights the trends followed by the learning-based run-time power management approaches, their upcoming trends and open research challenges
    • …
    corecore