2,664 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    Get PDF
    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the multivariate nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a decision tree to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier degree

    Detailed Diagnosis of Performance Anomalies in Sensornets

    Get PDF
    We address the problem of analysing performance anomalies in sensor networks. In this paper, we propose an approach that uses the local flash storage of the motes for logging system data, in combination with online statistical analysis. Our results show not only that this is a feasible method but that the overhead is significantly lower than that of communication-centric methods, and that interesting patterns can be revealed when calculating the correlation of large data sets of separate event types.GINSENGCONE

    A dependability framework for WSN-based aquatic monitoring systems

    Get PDF
    Wireless Sensor Networks (WSN) are being progressively used in several application areas, particularly to collect data and monitor physical processes. Moreover, sensor nodes used in environmental monitoring applications, such as the aquatic sensor networks, are often subject to harsh environmental conditions while monitoring complex phenomena. Non-functional requirements, like reliability, security or availability, are increasingly important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provides a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data is reliable or, more generically, that it has the necessary quality. The problem of ensuring the desired quality of data for dependable monitoring using WSNs is studied herein. With a dependability-oriented perspective, it is reviewed the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, it is given particular attention to understanding which faults can affect sensors, how they can affect the quality of the information, and how this quality can be improved and quantified. Open research issues for the specific case of aquatic monitoring applications are also discussed. One of the challenges in achieving a dependable system behavior is to overcome the external disturbances affecting sensor measurements and detect the failure patterns in sensor data. This is a particular problem in environmental monitoring, due to the difficulty in distinguishing a faulty behavior from the representation of a natural phenomenon. Existing solutions for failure detection assume that physical processes can be accurately modeled, or that there are large deviations that may be detected using coarse techniques, or more commonly that it is a high-density sensor network with value redundant sensors. This thesis aims at defining a new methodology for dependable data quality in environmental monitoring systems, aiming to detect faulty measurements and increase the sensors data quality. The framework of the methodology is overviewed through a generically applicable design, which can be employed to any environment sensor network dataset. The methodology is evaluated in various datasets of different WSNs, where it is used machine learning to model each sensor behavior, exploiting the existence of correlated data provided by neighbor sensors. It is intended to explore the data fusion strategies in order to effectively detect potential failures for each sensor and, simultaneously, distinguish truly abnormal measurements from deviations due to natural phenomena. This is accomplished with the successful application of the methodology to detect and correct outliers, offset and drifting failures in real monitoring networks datasets. In the future, the methodology can be applied to optimize the data quality control processes of new and already operating monitoring networks, and assist in the networks maintenance operations.As redes de sensores sem fios (RSSF) têm vindo cada vez mais a serem utilizadas em diversas áreas de aplicação, em especial para monitorizar e capturar informação de processos físicos em meios naturais. Neste contexto, os sensores que estão em contacto direto com o respectivo meio ambiente, como por exemplo os sensores em meios aquáticos, estão sujeitos a condições adversas e complexas durante o seu funcionamento. Esta complexidade conduz à necessidade de considerarmos, durante o desenvolvimento destas redes, os requisitos não funcionais da confiabilidade, da segurança ou da disponibilidade elevada. Para percebermos como satisfazer estes requisitos da monitorização com base em RSSF para aplicações ambientais, já existe uma boa base de conhecimento sobre técnicas de confiabilidade em sistemas distribuídos. Devido ao foco na obtenção de dados deste tipo de aplicações de RSSF, é particularmente importante garantir que os dados obtidos na monitorização sejam confiáveis ou, de uma forma mais geral, que tenham a qualidade necessária para o objetivo pretendido. Esta tese estuda o problema de garantir a qualidade de dados necessária para uma monitorização confiável usando RSSF. Com o foco na confiabilidade, revemos os possíveis impedimentos à obtenção de dados confiáveis e as soluções existentes capazes de corrigir ou mitigar esses impedimentos. Apesar de existir uma grande variedade de componentes que formam ou podem formar um sistema de monitorização com base em RSSF, prestamos particular atenção à compreensão das possíveis faltas que podem afetar os sensores, a como estas faltas afetam a qualidade dos dados recolhidos pelos sensores e a como podemos melhorar os dados e quantificar a sua qualidade. Tendo em conta o caso específico dos sistemas de monitorização em meios aquáticos, discutimos ainda as várias linhas de investigação em aberto neste tópico. Um dos desafios para se atingir um sistema de monitorização confiável é a deteção da influência de fatores externos relacionados com o ambiente monitorizado, que afetam as medições obtidas pelos sensores, bem como a deteção de comportamentos de falha nas medições. Este desafio é um problema particular na monitorização em ambientes naturais adversos devido à dificuldade da distinção entre os comportamentos associados às falhas nos sensores e os comportamentos dos sensores afetados pela à influência de um evento natural. As soluções existentes para este problema, relacionadas com deteção de faltas, assumem que os processos físicos a monitorizar podem ser modelados de forma eficaz, ou que os comportamentos de falha são caraterizados por desvios elevados do comportamento expectável de forma a serem facilmente detetáveis. Mais frequentemente, as soluções assumem que as redes de sensores contêm um número suficientemente elevado de sensores na área monitorizada e, consequentemente, que existem sensores redundantes relativamente à medição. Esta tese tem como objetivo a definição de uma nova metodologia para a obtenção de qualidade de dados confiável em sistemas de monitorização ambientais, com o intuito de detetar a presença de faltas nas medições e aumentar a qualidade dos dados dos sensores. Esta metodologia tem uma estrutura genérica de forma a ser aplicada a uma qualquer rede de sensores ambiental ou ao respectivo conjunto de dados obtido pelos sensores desta. A metodologia é avaliada através de vários conjuntos de dados de diferentes RSSF, em que aplicámos técnicas de aprendizagem automática para modelar o comportamento de cada sensor, com base na exploração das correlações existentes entre os dados obtidos pelos sensores da rede. O objetivo é a aplicação de estratégias de fusão de dados para a deteção de potenciais falhas em cada sensor e, simultaneamente, a distinção de medições verdadeiramente defeituosas de desvios derivados de eventos naturais. Este objectivo é cumprido através da aplicação bem sucedida da metodologia para detetar e corrigir outliers, offsets e drifts em conjuntos de dados reais obtidos por redes de sensores. No futuro, a metodologia pode ser aplicada para otimizar os processos de controlo da qualidade de dados quer de novos sistemas de monitorização, quer de redes de sensores já em funcionamento, bem como para auxiliar operações de manutenção das redes.Laboratório Nacional de Engenharia Civi

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Security, trust and cooperation in wireless sensor networks

    Get PDF
    Wireless sensor networks are a promising technology for many real-world applications such as critical infrastructure monitoring, scientific data gathering, smart buildings, etc.. However, given the typically unattended and potentially unsecured operation environment, there has been an increased number of security threats to sensor networks. In addition, sensor networks have very constrained resources, such as limited energy, memory, computational power, and communication bandwidth. These unique challenges call for new security mechanisms and algorithms. In this dissertation, we propose novel algorithms and models to address some important and challenging security problems in wireless sensor networks. The first part of the dissertation focuses on data trust in sensor networks. Since sensor networks are mainly deployed to monitor events and report data, the quality of received data must be ensured in order to make meaningful inferences from sensor data. We first study a false data injection attack in the distributed state estimation problem and propose a distributed Bayesian detection algorithm, which could maintain correct estimation results when less than one half of the sensors are compromised. To deal with the situation where more than one half of the sensors may be compromised, we introduce a special class of sensor nodes called \textit{trusted cores}. We then design a secure distributed trust aggregation algorithm that can utilize the trusted cores to improve network robustness. We show that as long as there exist some paths that can connect each regular node to one of these trusted cores, the network can not be subverted by attackers. The second part of the dissertation focuses on sensor network monitoring and anomaly detection. A sensor network may suffer from system failures due to loss of links and nodes, or malicious intrusions. Therefore, it is critical to continuously monitor the overall state of the network and locate performance anomalies. The network monitoring and probe selection problem is formulated as a budgeted coverage problem and a Markov decision process. Efficient probing strategies are designed to achieve a flexible tradeoff between inference accuracy and probing overhead. Based on the probing results on traffic measurements, anomaly detection can be conducted. To capture the highly dynamic network traffic, we develop a detection scheme based on multi-scale analysis of the traffic using wavelet transforms and hidden Markov models. The performance of the probing strategy and of the detection scheme are extensively evaluated in malicious scenarios using the NS-2 network simulator. Lastly, to better understand the role of trust in sensor networks, a game theoretic model is formulated to mathematically analyze the relation between trust and cooperation. Given the trust relations, the interactions among nodes are modeled as a network game on a trust-weighted graph. We then propose an efficient heuristic method that explores network heterogeneity to improve Nash equilibrium efficiency
    corecore