23 research outputs found

    A review of gait optimization based on evolutionary computation

    Get PDF
    Gait generation is very important as it directly affects the quality of locomotion of legged robots. As this is an optimization problem with constraints, it readily lends itself to Evolutionary Computation methods and solutions. This paper reviews the techniques used in evolution-based gait optimization, including why Evolutionary Computation techniques should be used, how fitness functions should be composed, and the selection of genetic operators and control parameters. This paper also addresses further possible improvements in the efficiency and quality of evolutionary gait optimization, some problems that have not yet been resolved and the perspectives for related future research

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Rich and Robust Bio-Inspired Locomotion Control for Humanoid Robots

    Get PDF
    Bipedal locomotion is a challenging task in the sense that it requires to maintain dynamic balance while steering the gait in potentially complex environments. Yet, humans usually manage to move without any apparent difficulty, even on rough terrains. This requires a complex control scheme which is far from being understood. In this thesis, we take inspiration from the impressive human walking capabilities to design neuromuscular controllers for humanoid robots. More precisely, we control the robot motors to reproduce the action of virtual muscles commanded by stimulations (i.e. neural signals), similarly to what is done during human locomotion. Because the human neural circuitry commanding these muscles is not completely known, we make hypotheses about this control scheme to simplify it and progressively refine the corresponding rules. This thesis thus aims at developing new walking algorithms for humanoid robots in order to obtain fast, human-like and energetically efficient gaits. In particular, gait robustness and richness are two key aspects of this work. In other words, the gaits developed in the thesis can be steered by an external operator, while being resistant to external perturbations. This is mainly tested during blind walking experiments on COMAN, a 95 cm tall humanoid robot. Yet, the proposed controllers can be adapted to other humanoid robots. In the beginning of this thesis, we adapt and port an existing reflex-based neuromuscular model to the real COMAN platform. When tested in a 2D simulation environment, this model was capable of reproducing stable human-like locomotion. By porting it to real hardware, we show that these neuromuscular controllers are viable solutions to develop new controllers for robotics locomotion. Starting from this reflex-based model, we progressively iterate and transform the stimulation rules to add new features. In particular, gait modulation is obtained with the inclusion of a central pattern generator (CPG), a neural circuit capable of producing rhythmic patterns of neural activity without receiving rhythmic inputs. Using this CPG, the 2D walker controllers are incremented to generate gaits across a range of forward speeds close to the normal human one. By using a similar control method, we also obtain 2D running gaits whose speed can be controlled by a human operator. The walking controllers are later extended to 3D scenarios (i.e. no motion constraint) with the capability to adapt both the forward speed and the heading direction (including steering curvature). In parallel, we also develop a method to automatically learn stimulation networks for a given task and we study how flexible feet affect the gait in terms of robustness and energy efficiency. In sum, we develop neuromuscular controllers generating human-like gaits with steering capabilities. These controllers recruit three main components: (i) virtual muscles generating torque references at the joint level, (ii) neural signals commanding these muscles with reflexes and CPG signals, and (iii) higher level commands controlling speed and heading. Interestingly, these developments target humanoid robots locomotion but can also be used to better understand human locomotion. In particular, the recruitment of a CPG during human locomotion is still a matter open to debate. This question can thus benefit from the experiments performed in this thesis

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    From bipedal locomotion to prosthetic walking: A hybrid system and nonlinear control approach

    Get PDF
    When modeled after the human form, humanoid robots more easily garner societal acceptance and gain increased dexterity in human environments. During this process of humanoid robot design, research on simulated bodies also yields a better understanding of the original biological system. Such advantages make humanoid robots ideal for use in areas such as elderly assistance, physical rehabilitation, assistive exoskeletons, and prosthetic devices. In these applications specifically, an understanding of human-like bipedal robotic locomotion is requisite for practical purposes. However, compared to mobile robots with wheels, humanoid walking robots are complex to design, difficult to balance, and hard to control, resulting in humanoid robots which walk slowly and unnaturally. Despite emerging research and technologies on humanoid robotic locomotion in recent decades, there still lacks a systematic method for obtaining truly kinematic and fluid walking. In this dissertation, we propose a formal optimization framework for achieving stable, human-like robotic walking with natural heel and toe behavior. Importantly, the mathematical construction allows us to directly realize natural walking on the custom-designed physical robot, AMBER2, resulting in a sustainable and robust multi-contact walking gait. As one of the ultimate goals of studying human-like robotic locomotion, the proposed systematic methodology is then translated to achieve prosthetic walking that is both human-like and energy-efficient, with reduced need for parameter tuning. We evaluate this method on two custom, powered transfemoral prostheses in both 2D (AMPRO1) and 3D (AMPRO3) cases. Finally, this dissertation concludes with future research opportunities.Ph.D
    corecore