60 research outputs found

    The sharing economy in the global South: Uber’s precarious labour force in Johannesburg

    Get PDF
    Submitted in the partial fulfilment for the Degree of Master of Arts in Development Studies Faculty of Humanities University of the Witwatersrand, March 2017The precarious existence of Uber drivers operating within Johannesburg’s metropolitan area is the primary area of study in which this dissertation has undertaken. Driver precarity, defined in the study as the loss of labour market security in various forms, is argued to stem from Uber’s sharing economy-inspired business model. The analysis of Uber’s business model, substantively focuses on the service’s dynamic pricing model of fare price setting, the implementation of a ‘rating’ system in which to evaluate driver performance and the use of ‘independent contractor’ labour. It is argued that each of these three Uber business practices place drivers in a position of precarity in the realm of their income, employment, work and job security. The study mobilises a qualitative research methodology, enlisting the methods of unstructured interviews on eight active Uber drivers, four autoethnographical observations on real-time work behaviour and document analysis to generate data for analysis. The prevailing argument made regarding Uber’s precarity-creation, is aided through a consultation of Guy Standing’s theorisation on precarity (2011), with Harvey’s flexible Accumulation theory (1990), Foucault’s Panopticism thesis (1975) and Hochschild’s emotional labour theory (1983) broadening the scope of the analysis.XL201

    Quantifying the benefits of vehicle pooling with shareability networks

    Get PDF
    Taxi services are a vital part of urban transportation, and a considerable contributor to traffic congestion and air pollution causing substantial adverse effects on human health. Sharing taxi trips is a possible way of reducing the negative impact of taxi services on cities, but this comes at the expense of passenger discomfort quantifiable in terms of a longer travel time. Due to computational challenges, taxi sharing has traditionally been approached on small scales, such as within airport perimeters, or with dynamical ad-hoc heuristics. However, a mathematical framework for the systematic understanding of the tradeoff between collective benefits of sharing and individual passenger discomfort is lacking. Here we introduce the notion of shareability network which allows us to model the collective benefits of sharing as a function of passenger inconvenience, and to efficiently compute optimal sharing strategies on massive datasets. We apply this framework to a dataset of millions of taxi trips taken in New York City, showing that with increasing but still relatively low passenger discomfort, cumulative trip length can be cut by 40% or more. This benefit comes with reductions in service cost, emissions, and with split fares, hinting towards a wide passenger acceptance of such a shared service. Simulation of a realistic online system demonstrates the feasibility of a shareable taxi service in New York City. Shareability as a function of trip density saturates fast, suggesting effectiveness of the taxi sharing system also in cities with much sparser taxi fleets or when willingness to share is low.Comment: Main text: 6 pages, 3 figures, SI: 24 page

    An Optimal Ride Sharing Recommendation Framework for Carpooling Services

    Get PDF
    Carpooling services allow drivers to share rides with other passengers. This helps in reducing the passengers’ fares and time, as well as traffic congestion and increases the income for drivers. In recent years, several carpooling based recommendation systems have been proposed. However, most of the existing systems do no effectively balance the conflicting objectives of drivers and passengers. We propose a Highest Aggregated Score Vehicular Recommendation (HASVR) framework that recommends a vehicle with highest aggregated score to the requesting passenger. The aggregated score is based on parameters, namely: (a) average time delay, (b) vehicle’s capacity, (c) fare reduction, (d) driving distance, and (e) profit increment. We propose a heuristic that balances the incentives of both drivers and passengers keeping in consideration their constraints and the real-time traffic conditions. We evaluated HASVR with a real-world dataset that contains GPS trace data of 61,136 taxicabs. Evaluation results confirm the effectiveness of HASVR compared to existing scheme in reducing the total mileage used to deliver all passengers, reducing the passengers’ fare, increasing the profit of drivers, and increasing the percentage of satisfied ride requests

    Data-Driven Dynamic Robust Resource Allocation: Application to Efficient Transportation

    Get PDF
    The transformation to smarter cities brings an array of emerging urbanization challenges. With the development of technologies such as sensor networks, storage devices, and cloud computing, we are able to collect, store, and analyze a large amount of data in real time. Modern cities have brought to life unprecedented opportunities and challenges for allocating limited resources in a data-driven way. Intelligent transportation system is one emerging research area, in which sensing data provides us opportunities for understanding spatial-temporal patterns of demand human and mobility. However, greedy or matching algorithms that only deal with known requests are far from efficient in the long run without considering demand information predicted based on data. In this dissertation, we develop a data-driven robust resource allocation framework to consider spatial-temporally correlated demand and demand uncertainties, motivated by the problem of efficient dispatching of taxi or autonomous vehicles. We first present a receding horizon control (RHC) framework to dispatch taxis towards predicted demand; this framework incorporates both information from historical record data and real-time GPS location and occupancy status data. It also allows us to allocate resource from a globally optimal perspective in a longer time period, besides the local level greedy or matching algorithm for assigning a passenger pick-up location of each vacant vehicle. The objectives include reducing both current and anticipated future total idle driving distance and matching spatial-temporal ratio between demand and supply for service quality. We then present a robust optimization method to consider spatial-temporally correlated demand model uncertainties that can be expressed in closed convex sets. Uncertainty sets of demand vectors are constructed from data based on theories in hypothesis testing, and the sets provide a desired probabilistic guarantee level for the performance of dispatch solutions. To minimize the average resource allocation cost under demand uncertainties, we develop a general data-driven dynamic distributionally robust resource allocation model. An efficient algorithm for building demand uncertainty sets that compatible with various demand prediction methods is developed. We prove equivalent computationally tractable forms of the robust and distributionally robust resource allocation problems using strong duality. The resource allocation problem aims to balance the demand-supply ratio at different nodes of the network with minimum balancing and re-balancing cost, with decision variables on the denominator that has not been covered by previous work. Trace-driven analysis with real taxi operational record data of San Francisco shows that the RHC framework reduces the average total idle distance of taxis by 52%, and evaluations with over 100GB of New York City taxi trip data show that robust and distributionally robust dispatch methods reduce the average total idle distance by 10% more compared with non-robust solutions. Besides increasing the service efficiency by reducing total idle driving distance, the resource allocation methods in this dissertation also reduce the demand-supply ratio mismatch error across the city

    Improving taxi dispatch services with real-time traffic and customer information

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore