1,452 research outputs found

    Convolutional Dictionary Regularizers for Tomographic Inversion

    Full text link
    There has been a growing interest in the use of data-driven regularizers to solve inverse problems associated with computational imaging systems. The convolutional sparse representation model has recently gained attention, driven by the development of fast algorithms for solving the dictionary learning and sparse coding problems for sufficiently large images and data sets. Nevertheless, this model has seen very limited application to tomographic reconstruction problems. In this paper, we present a model-based tomographic reconstruction algorithm using a learnt convolutional dictionary as a regularizer. The key contribution is the use of a data-dependent weighting scheme for the l1 regularization to construct an effective denoising method that is integrated into the inversion using the Plug-and-Play reconstruction framework. Using simulated data sets we demonstrate that our approach can improve performance over traditional regularizers based on a Markov random field model and a patch-based sparse representation model for sparse and limited-view tomographic data sets

    Unsupervised spectral sub-feature learning for hyperspectral image classification

    Get PDF
    Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Multimodal analysis for object classification and event detection

    Get PDF
    corecore