821 research outputs found

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Inferring human intentions from the brain data

    Get PDF

    Task switching in the prefrontal cortex

    Get PDF
    The overall goal of this dissertation is to elucidate the cellular and circuit mechanisms underlying flexible behavior in the prefrontal cortex. We are often faced with situations in which the appropriate behavior in one context is inappropriate in others. If these situations are familiar, we can perform the appropriate behavior without relearning how the context relates to the behavior — an important hallmark of intelligence. Neuroimaging and lesion studies have shown that this dynamic, flexible process of remapping context to behavior (task switching) is dependent on prefrontal cortex, but the precise contributions and interactions of prefrontal subdivisions are still unknown. This dissertation investigates two prefrontal areas that are thought to be involved in distinct, but complementary executive roles in task switching — the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC). Using electrophysiological recordings from macaque monkeys, I show that synchronous network oscillations in the dlPFC provide a mechanism to flexibly coordinate context representations (rules) between groups of neurons during task switching. Then, I show that, wheras the ACC neurons can represent rules at the cellular level, they do not play a significant role in switching between contexts — rather they seem to be more related to errors and motivational drive. Finally, I develop a set of web-enabled interactive visualization tools designed to provide a multi-dimensional integrated view of electrophysiological datasets. Taken together, these results contribute to our understanding of task switching by investigating new mechanisms for coordination of neurons in prefrontal cortex, clarifying the roles of prefrontal subdivisions during task switching, and providing visualization tools that enhance exploration and understanding of large, complex and multi-scale electrophysiological data

    Machine Learning Approach to Simulate Soil CO\u3csub\u3e2\u3c/sub\u3e Fluxes under Cropping Systems

    Get PDF
    With the growing number of datasets to describe greenhouse gas (GHG) emissions, there is an opportunity to develop novel predictive models that require neither the expense nor time required to make direct field measurements. This study evaluates the potential for machine learning (ML) approaches to predict soil GHG emissions without the biogeochemical expertise that is required to use many current models for simulating soil GHGs. There are ample data from field measurements now publicly available to test new modeling approaches. The objective of this paper was to develop and evaluate machine learning (ML) models using field data (soil temperature, soil moisture, soil classification, crop type, fertilization type, and air temperature) available in the Greenhouse gas Reduction through Agricultural Carbon Enhancement network (GRACEnet) database to simulate soil CO2 fluxes with different fertilization methods. Four machine learning algorithms—K nearest neighbor regression (KNN), support vector regression (SVR), random forest (RF) regression, and gradient boosted (GB) regression—were used to develop the models. The GB regression model outperformed all the other models on the training dataset with R2 = 0.88, MAE = 2177.89 g C ha−1 day−1, and RMSE 4405.43 g C ha−1 day−1. However, the RF and GB regression models both performed optimally on the unseen test dataset with R2 = 0.82. Machine learning tools were useful for developing predictors based on soil classification, soil temperature and air temperature when a large database like GRACEnet is available, but these were not highly predictive variables in correlation analysis. This study demonstrates the suitability of using tree-based ML algorithms for predictive modeling of CO2 fluxes, but no biogeochemical processes can be described with such models
    • …
    corecore