2,869 research outputs found

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    Identifying smart design attributes for Industry 4.0 customization using a clustering Genetic Algorithm

    Get PDF
    Industry 4.0 aims at achieving mass customization at a mass production cost. A key component to realizing this is accurate prediction of customer needs and wants, which is however a challenging issue due to the lack of smart analytics tools. This paper investigates this issue in depth and then develops a predictive analytic framework for integrating cloud computing, big data analysis, business informatics, communication technologies, and digital industrial production systems. Computational intelligence in the form of a cluster k-means approach is used to manage relevant big data for feeding potential customer needs and wants to smart designs for targeted productivity and customized mass production. The identification of patterns from big data is achieved with cluster k-means and with the selection of optimal attributes using genetic algorithms. A car customization case study shows how it may be applied and where to assign new clusters with growing knowledge of customer needs and wants. This approach offer a number of features suitable to smart design in realizing Industry 4.0

    Gravitational Clustering: A Simple, Robust and Adaptive Approach for Distributed Networks

    Full text link
    Distributed signal processing for wireless sensor networks enables that different devices cooperate to solve different signal processing tasks. A crucial first step is to answer the question: who observes what? Recently, several distributed algorithms have been proposed, which frame the signal/object labelling problem in terms of cluster analysis after extracting source-specific features, however, the number of clusters is assumed to be known. We propose a new method called Gravitational Clustering (GC) to adaptively estimate the time-varying number of clusters based on a set of feature vectors. The key idea is to exploit the physical principle of gravitational force between mass units: streaming-in feature vectors are considered as mass units of fixed position in the feature space, around which mobile mass units are injected at each time instant. The cluster enumeration exploits the fact that the highest attraction on the mobile mass units is exerted by regions with a high density of feature vectors, i.e., gravitational clusters. By sharing estimates among neighboring nodes via a diffusion-adaptation scheme, cooperative and distributed cluster enumeration is achieved. Numerical experiments concerning robustness against outliers, convergence and computational complexity are conducted. The application in a distributed cooperative multi-view camera network illustrates the applicability to real-world problems.Comment: 12 pages, 9 figure

    Robust Optimisation for Hydroelectric System Operation under Uncertainty

    Get PDF
    In this paper, we propose an optimal dispatch scheme for a cascade hydroelectric power system that maximises the head levels of each dam, and minimises the spillage effects taking into account uncertainty in the net load variations, i.e., the difference between the load and the renewable resources, and inflows to the cascade. By maximising the head levels of each dam the volume of water stored, which is a metric of system resiliency, is maximised. In this regard, the operation of the cascade hydroelectric power system is robust to the variability and intermittency of renewable resources and increases system resilience to variations in climatic conditions. Thus, we demon- strate the benefits of coupling hydroelectric and photovoltaic resources. To this end, we introduce an approximate model for a cascade hydroelectric power system. We then develop correlated probabilistic forecasts for the uncertain output of renewable resources, e.g., solar generation, using historical data based on clustering and Markov chain techniques. We incorporate the gen- erated forecast scenarios in the optimal dispatch of the cascade hydroelectric power system, and define a robust variant of the developed system. However, the robust variant is intractable due to the infinite number of constraints. Using tools from robust optimisation, we reformulate the resulting problem in a tractable form that is amenable to existing numerical tools and show that the computed dispatch is immunised against uncertainty. The efficacy of the proposed approach is demonstrated by means of an actual case study involving the Seven Forks system located in Kenya, which consists of five cascaded hydroelectric power systems. With the case study we demonstrate that the Seven Forks system may be coupled with solar generation since the “price of robustness” is small; thus demonstrating the benefits of coupling hydroelectric systems with solar generatio
    • …
    corecore